1,449 research outputs found

    Septic Arthritis Caused by Legionella dumoffii in a Patient with Systemic Lupus Erythematosus-Like Disease

    Get PDF
    We describe a patient with systemic lupus erythematosus (SLE)-like disease on immunosuppressive treatment who developed septic arthritis of the knee involving Legionella dumoffii. Cultures initially remained negative. A broad-range 16S PCR using synovial fluid revealed L. dumoffii rRNA genes, a finding that was subsequently confirmed by positive Legionella culture results

    Morphological Divergence and Flow-Induced Phenotypic Plasticity in a Native Fish from Anthropogenically Altered Stream Habitats

    Get PDF
    Understanding population-level responses to human-induced changes to habitats can elucidate the evolutionary consequences of rapid habitat alteration. Reservoirs constructed on streams expose stream fishes to novel selective pressures in these habitats. Assessing the drivers of trait divergence facilitated by these habitats will help identify evolutionary and ecological consequences of reservoir habitats. We tested for morphological divergence in a stream fish that occupies both stream and reservoir habitats. To assess contributions of genetic-level differences and phenotypic plasticity induced by flow variation, we spawned and reared individuals from both habitats types in flow and no flow conditions. Body shape significantly and consistently diverged in reservoir habitats compared with streams; individuals from reservoirs were shallower bodied with smaller heads compared with individuals from streams. Significant population-level differences in morphology persisted in offspring but morphological variation compared with field-collected individuals was limited to the head region. Populations demonstrated dissimilar flow-induced phenotypic plasticity when reared under flow, but phenotypic plasticity in response to flow variation was an unlikely explanation for observed phenotypic divergence in the field. Our results, together with previous investigations, suggest the environmental conditions currently thought to drive morphological change in reservoirs (i.e., predation and flow regimes) may not be the sole drivers of phenotypic change

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    A Mathematical Framework for Modelling the Metastatic Spread of Cancer

    Get PDF
    Cancer is a complex disease that starts with mutations of key genes in one cell or a small group of cells at a primary site in the body. If these cancer cells continue to grow successfully and, at some later stage, invade the surrounding tissue and acquire a vascular network, they can spread to distant secondary sites in the body. This process, known as metastatic spread, is responsible for around 90% of deaths from cancer and is one of the so-called hallmarks of cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner—a multigrid, hybrid, individual-based approach. This framework accounts for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible matrix metalloproteinase-2 (MMP-2), and for their interactions with the extracellular matrix. Using computational simulations, we demonstrate that our model captures all the key steps of the invasion-metastasis cascade, i.e. invasion by both heterogeneous cancer cell clusters and by single mesenchymal-like cancer cells; intravasation of these clusters and single cells both via active mechanisms mediated by matrix-degrading enzymes (MDEs) and via passive shedding; circulation of cancer cell clusters and single cancer cells in the vasculature with the associated risk of cell death and disaggregation of clusters; extravasation of clusters and single cells; and metastatic growth at distant secondary sites in the body. By faithfully reproducing experimental results, our simulations support the evidence-based hypothesis that the membrane-bound MT1-MMP is the main driver of invasive spread rather than diffusible MDEs such as MMP-2

    Glucose Exposure in Peritoneal Dialysis Is a Significant Factor Predicting Peritonitis

    Get PDF
    INTRODUCTION: Loss of residual renal function (RRF) as well as high peritoneal glucose exposure are associated with increased peritonitis frequency in peritoneal dialysis (PD) patients. Our objective was to investigate the contribution of RRF and peritoneal glucose exposure to peritonitis in PD patients. METHODS: In this prospective longitudinal cohort study, 105 incident end-stage renal disease patients that started PD between January 2006 and 2015 were studied. Follow-up was 5 years with censoring at death or switch to another treatment modality. Cox regression models were used to calculate the association between glucose exposure, RRF, and peritonitis. Kaplan-Meier analysis was used to examine the difference in occurrence of peritonitis between patients with high and low glucose exposure and between those with and without residual diuresis. RESULTS: One hundred and five patients were followed for a mean of 23 months. Fifty-one patients developed a peritonitis. Cox regression models at 6 months showed that glucose exposure and not residual diuresis significantly predicted PD peritonitis. Kaplan-Meier analysis after 6 months of follow-up showed that time to first PD peritonitis was significantly longer in the low glucose exposure group. Similarly, patients with RRF had a significantly longer interval to first peritonitis compared to patients without RRF. CONCLUSION: A higher exposure to glucose rather than loss of RRF is associated with an increased risk of peritonitis. This confirms the detrimental effects of glycemic harm to the peritoneal host defense on invading microorganisms and argues for the use of the lowest PD glucose concentrations possible

    Understanding the transgression of global and regional freshwater planetary boundaries

    Get PDF
    Freshwater ecosystems have been degraded due to intensive freshwater abstraction. Therefore, environmental flow requirements (EFRs) methods have been proposed to maintain healthy rivers and/or restore river flows. In this study, we used the Variable Monthly Flow (VMF) method to calculate the transgression of freshwater planetary boundaries: (1) natural deficits in which flow does not meet EFRs due to climate variability, and (2) anthropogenic deficits caused by water abstractions. The novelty is that we calculated spatially and cumulative monthly water deficits by river types including the frequency, magnitude and causes of environmental flow (EF) deficits (climatic and/or anthropogenic). Water deficit was found to be a regional rather than a global concern (less than 5% of total discharge). The results show that, from 1960 to 2000, perennial rivers with low flow alteration, such as the Amazon, had an EF deficit of 2–12% of the total discharge, and that the climate deficit was responsible for up to 75% of the total deficit. In rivers with high seasonality and high water abstractions such as the Indus, the total deficit represents up to 130% of its total discharge, 85% of which is due to withdrawals. We highlight the need to allocate water to humans and ecosystems sustainably. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’

    Restricted spirometry and cardiometabolic comorbidities: Results from the international population based BOLD study

    Get PDF
    Background: Whether restricted spirometry, i.e. low Forced Vital Capacity (FVC), predicts chronic cardiometabolic disease is not definitely known. In this international population-based study, we assessed the relationship between restricted spirometry and cardiometabolic comorbidities. Methods: A total of 23,623 subjects (47.5% males, 19.0% current smokers, age: 55.1 ± 10.8 years) from five continents (33 sites in 29 countries) participating in the Burden of Obstructive Lung Disease (BOLD) study were included. Restricted spirometry was defined as post-bronchodilator FVC < 5th percentile of reference values. Self-reports of physician-diagnosed cardiovascular disease (CVD; heart disease or stroke), hypertension, and diabetes were obtained through questionnaires. Results: Overall 31.7% of participants had restricted spirometry. However, prevalence of restricted spirometry varied approximately ten-fold, and was lowest (8.5%) in Vancouver (Canada) and highest in Sri Lanka (81.3%). Crude odds ratios for the association with restricted spirometry were 1.60 (95% CI 1.37–1.86) for CVD, 1.53 (95% CI 1.40–1.66) for hypertension, and 1.98 (95% CI 1.71–2.29) for diabetes. After adjustment for age, sex, education, Body Mass Index (BMI) and smoking, the odds ratios were 1.54 (95% CI 1.33–1.79) for CVD, 1.50 (95% CI 1.39–1.63) for hypertension, and 1.86 (95% CI 1.59–2.17) for diabetes. Conclusion: In this population-based, international, multi-site study, restricted spirometry associates with cardiometabolic diseases. The magnitude of these associations appears unattenuated when cardiometabolic risk factors are taken into account
    corecore