6,393 research outputs found

    A Classification of Minimal Sets of Torus Homeomorphisms

    Full text link
    We provide a classification of minimal sets of homeomorphisms of the two-torus, in terms of the structure of their complement. We show that this structure is exactly one of the following types: (1) a disjoint union of topological disks, or (2) a disjoint union of essential annuli and topological disks, or (3) a disjoint union of one doubly essential component and bounded topological disks. Periodic bounded disks can only occur in type 3. This result provides a framework for more detailed investigations, and additional information on the torus homeomorphism allows to draw further conclusions. In the non-wandering case, the classification can be significantly strengthened and we obtain that a minimal set other than the whole torus is either a periodic orbit, or the orbit of a periodic circloid, or the extension of a Cantor set. Further special cases are given by torus homeomorphisms homotopic to an Anosov, in which types 1 and 2 cannot occur, and the same holds for homeomorphisms homotopic to the identity with a rotation set which has non-empty interior. If a non-wandering torus homeomorphism has a unique and totally irrational rotation vector, then any minimal set other than the whole torus has to be the extension of a Cantor set.Comment: Published in Mathematische Zeitschrift, June 2013, Volume 274, Issue 1-2, pp 405-42

    Efficient algorithms for tensor scaling, quantum marginals and moment polytopes

    Full text link
    We present a polynomial time algorithm to approximately scale tensors of any format to arbitrary prescribed marginals (whenever possible). This unifies and generalizes a sequence of past works on matrix, operator and tensor scaling. Our algorithm provides an efficient weak membership oracle for the associated moment polytopes, an important family of implicitly-defined convex polytopes with exponentially many facets and a wide range of applications. These include the entanglement polytopes from quantum information theory (in particular, we obtain an efficient solution to the notorious one-body quantum marginal problem) and the Kronecker polytopes from representation theory (which capture the asymptotic support of Kronecker coefficients). Our algorithm can be applied to succinct descriptions of the input tensor whenever the marginals can be efficiently computed, as in the important case of matrix product states or tensor-train decompositions, widely used in computational physics and numerical mathematics. We strengthen and generalize the alternating minimization approach of previous papers by introducing the theory of highest weight vectors from representation theory into the numerical optimization framework. We show that highest weight vectors are natural potential functions for scaling algorithms and prove new bounds on their evaluations to obtain polynomial-time convergence. Our techniques are general and we believe that they will be instrumental to obtain efficient algorithms for moment polytopes beyond the ones consider here, and more broadly, for other optimization problems possessing natural symmetries

    A toral diffeomorphism with a non-polygonal rotation set

    Full text link
    We construct a diffeomorphism of the two-dimensional torus which is isotopic to the identity and whose rotation set is not a polygon

    Topological Entropy of Braids on the Torus

    Full text link
    A fast method is presented for computing the topological entropy of braids on the torus. This work is motivated by the need to analyze large braids when studying two-dimensional flows via the braiding of a large number of particle trajectories. Our approach is a generalization of Moussafir's technique for braids on the sphere. Previous methods for computing topological entropies include the Bestvina--Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina--Handel algorithm quickly becomes computationally intractable for large braid words, and matrix methods give only lower bounds, which are often poor for large braids. Our method is computationally fast and appears to give exponential convergence towards the exact entropy. As an illustration we apply our approach to the braiding of both periodic and aperiodic trajectories in the sine flow. The efficiency of the method allows us to explore how much extra information about flow entropy is encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    The dynamics of quasi-isometric foliations

    Full text link
    If the stable, center, and unstable foliations of a partially hyperbolic system are quasi-isometric, the system has Global Product Structure. This result also applies to Anosov systems and to other invariant splittings. If a partially hyperbolic system on a manifold with abelian fundamental group has quasi-isometric stable and unstable foliations, the center foliation is without holonomy. If, further, the system has Global Product Structure, then all center leaves are homeomorphic.Comment: 18 pages, 1 figur

    Periodic orbits of period 3 in the disc

    Full text link
    Let f be an orientation preserving homeomorphism of the disc D2 which possesses a periodic point of period 3. Then either f is isotopic, relative the periodic orbit, to a homeomorphism g which is conjugate to a rotation by 2 pi /3 or 4 pi /3, or f has a periodic point of least period n for each n in N*.Comment: 7 page
    corecore