13 research outputs found

    Herpesvirus skin disease in free-living common frogs Rana temporaria in Great Britain

    Get PDF
    Infectious disease is a significant driver of global amphibian declines, yet despite this, relatively little is known about the range of pathogens that affect free-living amphibians. Recent detection of the tentatively named Ranid herpesvirus 3 (RHV3), associated with skin disease in free-living common frogs Rana temporaria in Switzerland, helps to address this paucity in knowledge, but the geographic distribution and epidemiology of the pathogen remains unclear. Syndromic surveillance for ranid herpesvirus skin disease was undertaken throughout Great Britain (GB), January 2014 to December 2016. Reports of common frogs with macroscopic skin lesions with a characteristic grey appearance were solicited from members of the public. Post-mortem examination was conducted on one affected frog found dead in 2015 at a site in England. In addition, archived samples from an incident involving common frogs in England in 1997 with similar macroscopic lesions were further investigated. Transmission electron microscopy identified herpes-like virions in skin lesions from both the 1997 and 2015 incidents. RHV3, or RHV3-like virus, was detected in skin lesions from the 2015 case by PCR and sequencing. Our findings indicate that herpesvirus skin disease is endemic in common frogs in GB, with widespread distribution at apparently low prevalence. Further research into the role of host immunity, virus latency and the significance of infection to host survival is required to better understand the epidemiology and impact of cutaneous herpesvirus infections in amphibian populations

    Publisher Correction: Towards an ecosystem model of infectious disease

    Get PDF
    Correction to: Nature Ecology & Evolution https://doi.org/10.1038/s41559-021-01454-8, published online 17 May 2021

    Towards an ecosystem model of infectious disease

    Get PDF
    Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens-and the best ways to manage this-remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics

    Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes

    Get PDF
    Snake fungal disease (SFD) is an emerging disease of conservation concern in eastern North America. Ophidiomyces ophiodiicola\textit{Ophidiomyces ophiodiicola}, the causative agent of SFD, has been isolated from over 30 species of wild snakes from six families in North America. Whilst O. ophiodiicola\textit{O. ophiodiicola} has been isolated from captive snakes outside North America, the pathogen has not been reported from wild snakes elsewhere. We screened 33 carcasses and 303 moulted skins from wild snakes collected from 2010–2016 in Great Britain and the Czech Republic for the presence of macroscopic skin lesions and O. ophiodiicola\textit{O. ophiodiicola}. The fungus was detected using real-time PCR in 26 (8.6%) specimens across the period of collection. Follow up culture and histopathologic analyses confirmed that both O. ophiodiicola\textit{O. ophiodiicola} and SFD occur in wild European snakes. Although skin lesions were mild in most cases, in some snakes they were severe and were considered likely to have contributed to mortality. Culture characterisations demonstrated that European isolates grew more slowly than those from the United States, and phylogenetic analyses indicated that isolates from European wild snakes reside in a clade distinct from the North American isolates examined. These genetic and phenotypic differences indicate that the European isolates represent novel strains of O. ophiodiicola\textit{O. ophiodiicola}. Further work is required to understand the individual and population level impact of this pathogen in Europe.This work was undertaken as part of the Garden Wildlife Health project www.gardenwildlifehealth.org. Funding was provided by the UK Department for the Environment Food & Rural Affairs and Welsh Government through the Animal Plant & Health Agency’s Diseases of Wildlife Scheme Scanning Surveillance Programme (Project ED1600), the Esmée Fairbairn Foundation, the Universities Federation for Animal Welfare, and the U.S. Geological Survey

    The effect of global change on mosquito-borne disease

    No full text
    More than 80% of the global population is at risk of a vector-borne disease, with mosquito-borne diseases being the largest contributor to human vector-borne disease burden. Although many global processes, such as land-use and socioeconomic change, are thought to affect mosquito-borne disease dynamics, research to date has strongly focused on the role of climate change. Here, we show, through a review of contemporary modelling studies, that no consensus on how future changes in climatic conditions will impact mosquito-borne diseases exists, possibly due to interacting effects of other global change processes, which are often excluded from analyses. We conclude that research should not focus solely on the role of climate change but instead consider growing evidence for additional factors that modulate disease risk. Furthermore, future research should adopt new technologies, including developments in remote sensing and system dynamics modelling techniques, to enable a better understanding and mitigation of mosquito-borne diseases in a changing world
    corecore