14,247 research outputs found
Time (in)dependence in general relativity
We clarify the conditions for Birkhoff's theorem, that is, time-independence
in general relativity. We work primarily at the linearized level where guidance
from electrodynamics is particularly useful. As a bonus, we also derive the
equivalence principle. The basic time-independent solutions due to
Schwarzschild and Kerr provide concrete illustrations of the theorem. Only
familiarity with Maxwell's equations and tensor analysis is required.Comment: Revised version of originally titled "Kinder Kerr", to appear in
American Journal of Physic
Motor Learning in Response to Different Experimental Pain Models Among Healthy Individuals: A Systematic Review
Learning new movement patterns is a normal part of daily life, but of critical importance in both sport and rehabilitation. A major question is how different sensory signals are integrated together to give rise to motor adaptation and learning. More specifically, there is growing evidence that pain can give rise to alterations in the learning process. Despite a number of studies investigating the role of pain on the learning process, there is still no systematic review to summarize and critically assess investigations regarding this topic in the literature. Here in this systematic review, we summarize and critically evaluate studies that examined the influence of experimental pain on motor learning. Seventeen studies that exclusively assessed the effect of experimental pain models on motor learning among healthy human individuals were included for this systematic review, carried out based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The results of the review revealed there is no consensus regarding the effect of pain on the skill learning acquisition and retention. However, several studies demonstrated that participants who experienced pain continued to express a changed motor strategy to perform a motor task even 1 week after training under the pain condition. The results highlight a need for further studies in this area of research, and specifically to investigate whether pain has different effects on motor learning depending on the type of motor task
The National Dialogue on the Quadrennial Homeland Security Review
Six years after its creation, the Department of Homeland Security (DHS) undertook the first Quadrennial Homeland Security Review (QHSR) to inform the design and implementation of actions to ensure the safety of the United States and its citizens. This review, mandated by the Implementing the 9/11 Commission Recommendations Act of 2007, represents the first comprehensive examination of the homeland security strategy of the nation. The QHSR includes recommendations addressing the long-term strategy and priorities of the nation for homeland security and guidance on the programs, assets, capabilities, budget, policies, and authorities of the department.Rather than set policy internally and implement it in a top-down fashion, DHS undertook the QHSR in a new and innovative way by engaging tens of thousands of stakeholders and soliciting their ideas and comments at the outset of the process. Through a series of three-week-long, web-based discussions, stakeholders reviewed materials developed by DHS study groups, submitted and discussed their own ideas and priorities, and rated or "tagged" others' feedback to surface the most relevant ideas and important themes deserving further consideration.Key FindingsThe recommendations included: (1) DHS should enhance its capacity for coordinating stakeholder engagement and consultation efforts across its component agencies, (2) DHS and other agencies should create special procurement and contracting guidance for acquisitions that involve creating or hosting such web-based engagement platforms as the National Dialogue, and (3) DHS should begin future stakeholder engagements by crafting quantitative metrics or indicators to measure such outcomes as transparency, community-building, and capacity
Awareness, interest, and preferences of primary care providers in using point-of-care cancer screening technology
Well-developed point-of-care (POC) cancer screening tools have the potential to provide better cancer care to patients in both developed and developing countries. However, new medical technology will not be adopted by medical providers unless it addresses a population’s existing needs and end-users’ preferences. The goals of our study were to assess primary care providers’ level of awareness, interest, and preferences in using POC cancer screening technology in their practice and to provide guidelines to biomedical engineers for future POC technology development. A total of 350 primary care providers completed a one-time self-administered online survey, which took approximately 10 minutes to complete. A $50 Amazon gift card was given as an honorarium for the first 100 respondents to encourage participation. The description of POC cancer screening technology was provided in the beginning of the survey to ensure all participants had a basic understanding of what constitutes POC technology. More than half of the participants (57%) stated that they heard of the term “POC technology” for the first time when they took the survey. However, almost all of the participants (97%) stated they were either “very interested” (68%) or “somewhat interested” (29%) in using POC cancer screening technology in their practice. Demographic characteristics such as the length of being in the practice of medicine, the percentage of patients on Medicaid, and the average number of patients per day were not shown to be associated with the level of interest in using POC. These data show that there is a great interest in POC cancer screening technology utilization among this population of primary care providers and vast room for future investigations to further understand the interest and preferences in using POC cancer technology in practice. Ensuring that the benefits of new technology outweigh the costs will maximize the likelihood it will be used by medical providers and patients
Effect of various dopant elements on primary graphite growth
Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates
Evaluating hydrology preservation of simplified terrain representations
We present an error metric based on the potential energy of water flow to evaluate the quality of lossy terrain simplification algorithms. Typically, terrain compression algorithms seek to minimize RMS (root mean square) and maximum error. These metrics fail to capture whether a reconstructed terrain preserves the drainage network. A quantitative measurement of how accurately a drainage network captures the hydrology is important for determining the effectiveness of a terrain simplification technique. Having a measurement for testing and comparing different models has the potential to be widely used in numerous applications (flood prevention, erosion measurement, pollutant propagation, etc). In this paper, we transfer the drainage network computed on reconstructed geometry onto the original uncompressed terrain and use our error metric to measure the level of error created by the simplification. We also present a novel terrain simplification algorithm based on the compression of hydrology features. This method and other terrain compression schemes are then compared using our new metric
Mesoscopic one-way channels for quantum state transfer via the Quantum Hall Effect
We show that the one-way channel formalism of quantum optics has a physical
realisation in electronic systems. In particular, we show that magnetic edge
states form unidirectional quantum channels capable of coherently transporting
electronic quantum information. Using the equivalence between one-way photonic
channels and magnetic edge states, we adapt a proposal for quantum state
transfer to mesoscopic systems using edge states as a quantum channel, and show
that it is feasible with reasonable experimental parameters. We discuss how
this protocol may be used to transfer information encoded in number, charge or
spin states of quantum dots, so it may prove useful for transferring quantum
information between parts of a solid-state quantum computer.Comment: 4 pages, 3 figure
- …