6 research outputs found

    Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?

    Get PDF
    Patients with bicuspid aortic valve (BAV) and patients with Marfan syndrome (MFS) are more prone to develop aortic dilation and dissection compared to persons with a tricuspid aortic valve (TAV). To elucidate potential common and distinct pathways of clinical relevance, we compared the histopathological substrates of aortopathy. Ascending aortic wall biopsies were divided in five groups: BAV (n = 36) and TAV (n = 23) without and with dilation and non-dilated MFS (n = 8). General histologic features, apoptosis, the expr

    Aortic microcalcification is associated with elastin fragmentation in Marfan syndrome

    Get PDF
    Marfan syndrome (MFS) is a connective tissue disorder in which aortic rupture is the major cause of death. MFS patients with an aortic diameter below the advised limit for prophylactic surgery (<5 cm) may unexpectedly experience an aortic dissection or rupture, despite yearly monitoring. Hence, there is a clear need for improved prognostic markers to predict such aortic events. We hypothesize that elastin fragments play a causal role in aortic calcification in MFS, and that microcalcification serves as a marker for aortic disease severity. To address this hypothesis, we analysed MFS patient and mouse aortas. MFS patient aortic tissue showed enhanced microcalcification in areas with extensive elastic lamina fragmentation in the media. A causal relationship between medial injury and microcalcification was revealed by studies in vascular smooth muscle cells (SMCs); elastin peptides were shown to increase the activity of the calcification marker alkaline phosphatase (ALP) and reduce the expression of the calcification inhibitor matrix GLA protein in human SMCs. In murine Fbn1C1039G/+ MFS aortic SMCs, Alpl mRNA and activity were upregulated as compared with wild-type SMCs. The elastin peptide-induced ALP activity was prevented by incubation with lactose or a neuraminidase inhibitor, which inhibit the elastin receptor complex, and a mitogen-activated protein kinase kinase-1/2 inhibitor, indicating downstream involvement of extracellular signal-regulated kinase-1/2 (ERK1/2) phosphorylation. Histological analyses in MFS mice revealed macrocalcification in the aortic root, whereas the ascending aorta contained microcalcification, as identified with the near-infrared fluorescent bisphosphonate probe OsteoSense-800. Significantly, microcalcification correlated strongly with aortic diameter, distensibility, elastin breaks, and phosphorylated ERK1/2. In conclusion, microcalcification co-localizes with aortic elastin degradation in MFS aortas of humans and mice, where elastin-derived peptides induce a calcification process in SMCs via the elastin receptor complex and ERK1/2 activation. We propose microcalcification as a novel imaging marker to monitor local elastin degradation a

    Glycoproteomic Analysis of the Aortic Extracellular Matrix in Marfan Patients.

    Get PDF
    OBJECTIVE: Marfan syndrome (MFS) is caused by mutations in FBN1 (fibrillin-1), an extracellular matrix (ECM) component, which is modified post-translationally by glycosylation. This study aimed to characterize the glycoproteome of the aortic ECM from patients with MFS and relate it to aortopathy. Approach and Results: ECM extracts of aneurysmal ascending aortic tissue from patients with and without MFS were enriched for glycopeptides. Direct N-glycopeptide analysis by mass spectrometry identified 141 glycoforms from 47 glycosites within 35 glycoproteins in the human aortic ECM. Notably, MFAP4 (microfibril-associated glycoprotein 4) showed increased and more diverse N-glycosylation in patients with MFS compared with control patients. MFAP4 mRNA levels were markedly higher in MFS aortic tissue. MFAP4 protein levels were also increased at the predilection (convexity) site for ascending aorta aneurysm in bicuspid aortic valve patients, preceding aortic dilatation. In human aortic smooth muscle cells, MFAP4 mRNA expression was induced by TGF (transforming growth factor)-β1 whereas siRNA knockdown of MFAP4 decreased FBN1 but increased elastin expression. These ECM changes were accompanied by differential gene expression and protein abundance of proteases from ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family and their proteoglycan substrates, respectively. Finally, high plasma MFAP4 concentrations in patients with MFS were associated with a lower thoracic descending aorta distensibility and greater incidence of type B aortic dissection during 68 months follow-up. CONCLUSIONS: Our glycoproteomics analysis revealed that MFAP4 glycosylation is enhanced, as well as its expression during the advanced, aneurysmal stages of MFS compared with control aneurysms from patients without MFS
    corecore