74 research outputs found

    Observation of grand-canonical number statistics in a photon Bose-Einstein condensate

    Full text link
    We report measurements of particle number correlations and fluctuations of a photon Bose-Einstein condensate in a dye microcavity using a Hanbury Brown-Twiss experiment. The photon gas is coupled to a reservoir of molecular excitations, which serve both as heat bath and particle reservoir to realize grand-canonical conditions. For large reservoirs, we observe strong number fluctuations of order of the total particle number extending deep into the condensed phase. Our results demonstrate that Bose-Einstein condensation under grand-canonical ensemble conditions does not imply second-order coherence.Comment: 11 pages, 4 figure

    Bose-Einstein Condensation of Photons versus Lasing and Hanbury Brown-Twiss Measurements with a Condensate of Light

    Full text link
    The advent of controlled experimental accessibility of Bose-Einstein condensates, as realized with e.g. cold atomic gases, exciton-polaritons, and more recently photons in a dye-filled optical microcavity, has paved the way for new studies and tests of a plethora of fundamental concepts in quantum physics. We here describe recent experiments studying a transition between laser-like dynamics and Bose-Einstein condensation of photons in the dye microcavity system. Further, measurements of the second-order coherence of the photon condensate are presented. In the condensed state we observe photon number fluctuations of order of the total particle number, as understood from effective particle exchange with the photo-excitable dye molecules. The observed intensity fluctuation properties give evidence for Bose-Einstein condensation occurring in the grand-canonical statistical ensemble regime

    Bose-Einstein Condensation of Photons in a Microscopic Optical Resonator: Towards Photonic Lattices and Coupled Cavities

    Full text link
    Bose-Einstein condensation has in the last two decades been observed in cold atomic gases and in solid-state physics quasiparticles, exciton-polaritons and magnons, respectively. The perhaps most widely known example of a bosonic gas, photons in blackbody radiation, however exhibits no Bose-Einstein condensation, because the particle number is not conserved and at low temperatures the photons disappear in the system's walls instead of massively occupying the cavity ground mode. This is not the case in a small optical cavity, with a low-frequency cutoff imprinting a spectrum of photon energies restricted to values well above the thermal energy. The here reported experiments are based on a microscopic optical cavity filled with dye solution at room temperature. Recent experiments of our group observing Bose-Einstein condensation of photons in such a setup are described. Moreover, we discuss some possible applications of photon condensates to realize quantum manybody states in periodic photonic lattices and photonic Josephson devices

    Nonlocality-induced surface localization in Bose-Einstein condensates of light

    Full text link
    The ability to create and manipulate strongly correlated quantum many-body states is of central importance to the study of collective phenomena in several condensed-matter systems. In the last decades, a great amount of work has been focused on ultracold atoms in optical lattices, which provide a flexible platform to simulate peculiar phases of matter both for fermionic and bosonic particles. The recent experimental demonstration of Bose-Einstein condensation (BEC) of light in dye-filled microcavities has opened the intriguing possibility to build photonic simulators of solid-state systems, with potential advantages over their atomic counterpart. A distinctive feature of photon BEC is the thermo-optical nature of the effective photon-photon interaction, which is intrinsically nonlocal and can thus induce interactions of arbitrary range. This offers the opportunity to systematically study the collective behaviour of many-body systems with tunable interaction range. In this paper, we theoretically study the effect of nonlocal interactions in photon BEC. We first present numerical results of BEC in a double-well potential, and then extend our analysis to a short one-dimensional lattice with open boundaries. By resorting to a numerical procedure inspired by the Newton-Raphson method, we simulate the time-independent Gross-Pitaevskii equation and provide evidence of surface localization induced by nonlocality, where the condensate density is localized at the boundaries of the potential. Our work paves the way towards the realization of synthetic matter with photons, where the interplay between long-range interactions and low dimensionality can lead to the emergence of unexplored nontrivial collective phenomena.Comment: 13 pages, 6 figures. Updated version after publication in Phys. Rev.

    Resonance beating of light stored using atomic spinor polaritons

    Full text link
    We investigate the storage of light in atomic rubidium vapor using a multilevel-tripod scheme. In the system, two collective dark polariton modes exist, forming an effective spinor quasiparticle. Storage of light is performed by dynamically reducing the optical group velocity to zero. After releasing the stored pulse, a beating of the two reaccelerated optical modes is monitored. The observed beating signal oscillates at an atomic transition frequency, opening the way to novel quantum limited measurements of atomic resonance frequencies and quantum switches.Comment: 10 pages, 4 figures; paper title changed, minor corrections implemented
    corecore