930 research outputs found
Electromagnetic form factors of light vector mesons
The electromagnetic form factors G_E(q^2), G_M(q^2), and G_Q(q^2), charge
radii, magnetic and quadrupole moments, and decay widths of the light vector
mesons rho^+, K^{*+} and K^{*0} are calculated in a Lorentz-covariant,
Dyson-Schwinger equation based model using algebraic quark propagators that
incorporate confinement, asymptotic freedom, and dynamical chiral symmetry
breaking, and vector meson Bethe-Salpeter amplitudes closely related to the
pseudoscalar amplitudes obtained from phenomenological studies of pi and K
mesons. Calculated static properties of vector mesons include the charge radii
and magnetic moments: r_{rho+} = 0.61 fm, r_{K*+} = 0.54 fm, and r^2_{K*0} =
-0.048 fm^2; mu_{rho+} = 2.69, mu_{K*+} = 2.37, and mu_{K*0} = -0.40. The
calculated static limits of the rho-meson form factors are similar to those
obtained from light-front quantum mechanical calculations, but begin to differ
above q^2 = 1 GeV^2 due to the dynamical evolution of the quark propagators in
our approach.Comment: 8 pages of RevTeX, 5 eps figure
Thermal Decay of the Cosmological Constant into Black Holes
We show that the cosmological constant may be reduced by thermal production
of membranes by the cosmological horizon, analogous to a particle ``going over
the top of the potential barrier", rather than tunneling through it. The
membranes are endowed with charge associated with the gauge invariance of an
antisymmetric gauge potential. In this new process, the membrane collapses into
a black hole, thus the net effect is to produce black holes out of the vacuum
energy associated with the cosmological constant. We study here the
corresponding Euclidean configurations ("thermalons"), and calculate the
probability for the process in the leading semiclassical approximation.Comment: 14 pages, 6 figures. Minor correction
Singular potentials and annihilation
We discuss the regularization of attractive singular potentials , by infinitesimal imaginary addition to interaction
constant . Such a procedure enables unique
definition of scattering observables and is equal to an absorption (creation)
of particles in the origin. It is shown, that suggested regularization is an
analytical continuation of the scattering amplitudes of repulsive singular
potential in interaction constant . The nearthreshold properties of
regularized in a mentioned way singular potential are examined. We obtain
expressions for the scattering lengths, which turn to be complex even for
infinitesimal imaginary part of interaction constant. The problem of
perturbation of nearthreshold states of regular potential by a singular one is
treated, the expressions for level shifts and widths are obtained. We show,
that the physical sense of suggested regularization is that the scattering
observables are insensitive to any details of the short range modification of
singular potential, if there exists sufficiently strong inelastic short range
interaction. In this case the scattering observables are determined by
solutions of Schrodinger equation with regularized potential . We point out that the developed formalism can be applied for the
description of systems with short range annihilation, in particular low energy
nucleon-antinucleon scattering.Comment: 10 page
The , , and electromagnetic form factors
The rainbow truncation of the quark Dyson-Schwinger equation is combined with
the ladder Bethe-Salpeter equation for the meson amplitudes and the dressed
quark-photon vertex in a self-consistent Poincar\'e-invariant study of the pion
and kaon electromagnetic form factors in impulse approximation. We demonstrate
explicitly that the current is conserved in this approach and that the obtained
results are independent of the momentum partitioning in the Bethe-Salpeter
amplitudes. With model gluon parameters previously fixed by the condensate, the
pion mass and decay constant, and the kaon mass, the charge radii and spacelike
form factors are found to be in good agreement with the experimental data.Comment: 8 pages, 6 figures, Revte
Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: A longitudinal analysis of rapid progressors and long-term asymptomatics.
To gain more insight into the role of HIV-1-specific cytotoxic T lymphocytes (CTL) in the pathogenesis of AIDS, we investigated temporal relations between HIV-1 Gag-specific precursor CTL (CTLp), HIV-1 viral load, CD4+ T cell counts, and T cell function. Six HIV-1-infected subjects, who were asymptomatic for more than 8 yr with CD4+ counts > 500 cells/mm3, were compared with six subjects who progressed to AIDS within 5 yr after HIV-1 seroconversion. In the long-term asymptomatics, persistent HIV-1 Gag-specific CTL responses and very low numbers of HIV-1-infected CD4+ T cells coincided with normal and stable CD4+ counts and preserved CD3 mAb-induced T cell reactivity for more than 8 yr. In five out of six rapid progressors Gag-specific CTLp were also detected. However, early in infection the number of circulating HIV-1-infected CD4+ T cells increased despite strong and mounting Gag-specific CTL responses. During subsequent clinical progression to AIDS, loss of Gag-specific CTLp coincided with precipitating CD4+ counts and severe deterioration of T cell function. The possible relationships of HIV-1 Gag-specific CTLp to disease progression are discussed
Renormalized Path Integral for the Two-Dimensional Delta-Function Interaction
A path-integral approach for delta-function potentials is presented.
Particular attention is paid to the two-dimensional case, which illustrates the
realization of a quantum anomaly for a scale invariant problem in quantum
mechanics. Our treatment is based on an infinite summation of perturbation
theory that captures the nonperturbative nature of the delta-function bound
state. The well-known singular character of the two-dimensional delta-function
potential is dealt with by considering the renormalized path integral resulting
from a variety of schemes: dimensional, momentum-cutoff, and real-space
regularization. Moreover, compatibility of the bound-state and scattering
sectors is shown.Comment: 26 pages. The paper was significantly expanded and numerous equations
were added for the sake of clarity; the main results and conclusions are
unchange
Consistency analysis of a nonbirefringent Lorentz-violating planar model
In this work analyze the physical consistency of a nonbirefringent
Lorentz-violating planar model via the analysis of the pole structure of its
Feynman propagators. The nonbirefringent planar model, obtained from the
dimensional reduction of the CPT-even gauge sector of the standard model
extension, is composed of a gauge and a scalar fields, being affected by
Lorentz-violating (LIV) coefficients encoded in the symmetric tensor
. The propagator of the gauge field is explicitly evaluated
and expressed in terms of linear independent symmetric tensors, presenting only
one physical mode. The same holds for the scalar propagator. A consistency
analysis is performed based on the poles of the propagators. The isotropic
parity-even sector is stable, causal and unitary mode for .
On the other hand, the anisotropic sector is stable and unitary but in general
noncausal. Finally, it is shown that this planar model interacting with a
Higgs field supports compactlike vortex configurations.Comment: 11 pages, revtex style, final revised versio
On the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects on the Harmonic Oscillator
In this work, we obtain bound states for a nonrelativistic spin-half neutral
particle under the influence of a Coulomb-like potential induced by the Lorentz
symmetry breaking effects. We present a new possible scenario of studying the
Lorentz symmetry breaking effects on a nonrelativistic quantum system defined
by a fixed space-like vector field parallel to the radial direction interacting
with a uniform magnetic field along the z-axis. Furthermore, we also discuss
the influence of a Coulomb-like potential induced by Lorentz symmetry violation
effects on the two-dimensional harmonic oscillator.Comment: 14 pages, no figure, this work has been accepted for publication in
The European Physical Journal Plu
The Quark-Photon Vertex and the Pion Charge Radius
The rainbow truncation of the quark Dyson-Schwinger equation is combined with
the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study
the low-momentum behavior of the pion electromagnetic form factor. With model
gluon parameters previously fixed by the pion mass and decay constant, the pion
charge radius is found to be in excellent agreement with the data. When
the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex
directly from the quark propagator, less than half of is generated.
The remainder of is seen to be attributable to the presence of the
-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure
Overnight levels of luteinizing hormone, follicle-stimulating hormone and growth hormone before and during gonadotropin-releasing hormone analogue treatment in short boys born small for gestational age
Aims: To evaluate if 3 months of gonadotropin-releasing hormone analogue (GnRHa) treatment results in sufficient suppression of pubertal luteinizing hormone (LH) and follicle-stimulating hormone (FSH) profile patterns in short pubertal small for gestational age (SGA) boys. To compare growth hormone (GH) profiles and fasting insulin-like growth factor (IGF)-I and IGF-binding protein-3 (IGFBP-3) levels after 3 months of GnRHa treatment with those at baseline. Methods: After measurement of baseline overnight profiles and IGF-I and IGFBP-3 levels, 14 short pubertal SGA boys received leuprorelide acetate depots of 3.75 mg subcutaneously, every 4 weeks. Results: At baseline, mean GH levels were comparable with those of controls, whereas IGF-I and IGFBP-3 standard deviation scores (SDS) were significantly lower than zero SDS. After 3 months of GnRHa treatment, all boys showed clinical arrest of puberty. The area under the curve above zero, mean and maximum LH and FSH had significantly decreased to prepubertal levels. Peak LH during the GnRH agonist test, however, indicated insufficient pubertal suppression in 43% of boys. Overnight GH profile characteristics and IGF-I and IGFBP-3 levels did not significantly change. Conclusions: Puberty was sufficiently suppressed by GnRHa treatment, as shown by the prepubertal LH and FSH profiles. After 3 months of GnRHa treatment, overnight GH profile characteristics had not significantly changed, reflecting that GH levels are comparable for prepubertal and early pubertal boys
- …
