2,325 research outputs found

    Cestode Zoonoses: Echinococcosis and Cysticercosis: An Emergent and Global Problem

    Get PDF

    Transmission of Onchocerciasis in Wadelai Focus of Northwestern Uganda Has Been Interrupted and the Disease Eliminated

    Get PDF
    Wadelai, an isolated focus for onchocerciasis in northwest Uganda, was selected for piloting an onchocerciasis elimination strategy that was ultimately the precursor for countrywide onchocerciasis elimination policy. The Wadelai focus strategy was to increase ivermectin treatments from annual to semiannual frequency and expand geographic area in order to include communities with nodule rate of less than 20%. These communities had not been covered by the previous policy that sought to control onchocerciasis only as a public health problem. From 2006 to 2010, Wadelai program successfully attained ultimate treatment goal (UTG), treatment coverage of ≥90%, despite expanding from 19 to 34 communities and from 5,600 annual treatments to over 29,000 semiannual treatments. Evaluations in 2009 showed no microfilaria in skin snips of over 500 persons examined, and only 1 of 3011 children was IgG4 antibody positive to the OV16 recombinant antigen. No Simulium vectors were found, and their disappearance could have sped up interruption of transmission. Although twice-per-year treatment had an unclear role in interruption of transmission, the experience demonstrated that twice-per-year treatment is feasible in the Ugandan setting. The monitoring data support the conclusion that onchocerciasis has been eliminated from the Wadelai focus of Uganda

    Which nets are being used: factors associated with mosquito net use in Amhara, Oromia and Southern Nations, Nationalities and Peoples' Regions of Ethiopia.

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: There has been recent large scale-up of malaria control interventions in Ethiopia where transmission is unstable. While household ownership of long-lasting insecticidal nets (LLIN) has increased greatly, there are concerns about inadequate net use. This study aimed to investigate factors associated with net use at two time points, before and after mass distribution of nets. METHODS: Two cross sectional surveys were carried out in 2006 and 2007 in Amhara, Oromia and SNNP regions. The latter was a sub-sample of the national Malaria Indicator Survey (MIS 3R). Each survey wave used multi-stage cluster random sampling with 25 households per cluster (224 clusters with 5,730 households in Baseline 2006 and 245 clusters with 5,910 households in MIS 3R 2007). Net ownership was assessed by visual inspection while net utilization was reported as use of the net the previous night. This net level analysis was restricted to households owning at least one net of any type. Logistic regression models of association between net use and explanatory variables including net type, age, condition, cost and other household characteristics were undertaken using generalized linear latent and mixed models (GLLAMM). RESULTS: A total of 3,784 nets in 2,430 households were included in the baseline 2006 analysis while the MIS 3R 2007 analysis comprised 5,413 nets in 3,328 households. The proportion of nets used the previous night decreased from 85.1% to 56.0% between baseline 2006 and MIS 3R 2007, respectively. Factors independently associated with increased proportion of nets used were: LLIN net type (at baseline 2006); indoor residual spraying (at MIS 3R 2007); and increasing wealth index at both surveys. At both baseline 2006 and MIS 3R 2007, reduced proportion of nets used was independently associated with increasing net age, increasing damage of nets, increasing household net density, and increasing altitude (>2,000 m). CONCLUSION: This study identified modifiable factors affecting use of nets that were consistent across both surveys. While net replacement remains important, the findings suggest that: more education about use and care of nets; making nets more resistant to damage; and encouraging net mending are likely to maximize the huge investment in scale up of net ownership by ensuring they are used. Without this step, the widespread benefits of LLIN cannot be realized

    Integrating an NTD with One of “The Big Three”: Combined Malaria and Trachoma Survey in Amhara Region of Ethiopia

    Get PDF
    The “big three” killer diseases are malaria, HIV/AIDS, and tuberculosis; control programs for these diseases are usually well developed and financed. The neglected tropical diseases (NTDs) are a group of ancient afflictions that are frequently sidelined by planners and are under-resourced. Opportunities of integrating the big three with NTDs have been talked about but not widely acted upon. There is potential synergy for an integrated trachoma and malaria control program since control of both diseases is community-based. The first step in accessing these synergies has been an integrated malaria prevalence and indicator and trachoma prevalence and risk factor survey. This has been achieved at the incremental cost of one additional staff member per field team. The results give unprecedented precision for the calculation of intervention targets for the integrated program and demonstrate that it is possible to integrate NTDs with the “big three.

    Performance of Local Light Microscopy and the ParaScreen Pan/Pf Rapid Diagnostic Test to Detect Malaria in Health Centers in Northwest Ethiopia

    Get PDF
    Background: Diagnostic tests are recommended for suspected malaria cases before treatment, but comparative performance of microscopy and rapid diagnostic tests (RDTs) at rural health centers has rarely been studied compared to independent expert microscopy. Methods: Participants (N = 1997) with presumptive malaria were recruited from ten health centers with a range of transmission intensities in Amhara Regional State, Northwest Ethiopia during October to December 2007. Microscopy and ParaScreen Pan/PfH RDT were done immediately by health center technicians. Blood slides were re-examined later at a central laboratory by independent expert microscopists. Results: Of 1,997 febrile patients, 475 (23.8%) were positive by expert microscopists, with 57.7 % P.falciparum, 24.6 % P.vivax and 17.7 % mixed infections. Sensitivity of health center microscopists for any malaria species was.90 % in five health centers (four of which had the highest prevalence),.70 % in nine centers and 44 % in one site with lowest prevalence. Specificity for health center microscopy was very good (.95%) in all centers. For ParaScreen RDT, sensitivity was 9090 % in three centers, 70 % in six and,60 % in four centers. Specificity was $90 % in all centers except one where it was 85%. Conclusions: Health center microscopists performed well in nine of the ten health centers; while for ParaScreen RDT they performed well in only six centers. Overall the accuracy of local microscopy exceeded that of RDT for all outcomes. Thi

    Factors associated with mosquito net use by individuals in households owning nets in Ethiopia

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Ownership of insecticidal mosquito nets has dramatically increased in Ethiopia since 2006, but the proportion of persons with access to such nets who use them has declined. It is important to understand individual level net use factors in the context of the home to modify programmes so as to maximize net use. Methods Generalized linear latent and mixed models (GLLAMM) were used to investigate net use using individual level data from people living in net-owning households from two surveys in Ethiopia: baseline 2006 included 12,678 individuals from 2,468 households and a sub-sample of the Malaria Indicator Survey (MIS) in 2007 included 14,663 individuals from 3,353 households. Individual factors (age, sex, pregnancy); net factors (condition, age, net density); household factors (number of rooms [2006] or sleeping spaces [2007], IRS, women's knowledge and school attendance [2007 only], wealth, altitude); and cluster level factors (rural or urban) were investigated in univariate and multi-variable models for each survey. Results In 2006, increased net use was associated with: age 25-49 years (adjusted (a) OR = 1.4, 95% confidence interval (CI) 1.2-1.7) compared to children U5; female gender (aOR = 1.4; 95% CI 1.2-1.5); fewer nets with holes (Ptrend = 0.002); and increasing net density (Ptrend < 0.001). Reduced net use was associated with: age 5-24 years (aOR = 0.2; 95% CI 0.2-0.3). In 2007, increased net use was associated with: female gender (aOR = 1.3; 95% CI 1.1-1.6); fewer nets with holes (aOR [all nets in HH good] = 1.6; 95% CI 1.2-2.1); increasing net density (Ptrend < 0.001); increased women's malaria knowledge (Ptrend < 0.001); and urban clusters (aOR = 2.5; 95% CI 1.5-4.1). Reduced net use was associated with: age 5-24 years (aOR = 0.3; 95% CI 0.2-0.4); number of sleeping spaces (aOR [per additional space] = 0.6, 95% CI 0.5-0.7); more old nets (aOR [all nets in HH older than 12 months] = 0.5; 95% CI 0.3-0.7); and increasing household altitude (Ptrend < 0.001). Conclusion In both surveys, net use was more likely by women, if nets had fewer holes and were at higher net per person density within households. School-age children and young adults were much less likely to use a net. Increasing availability of nets within households (i.e. increasing net density), and improving net condition while focusing on education and promotion of net use, especially in school-age children and young adults in rural areas, are crucial areas for intervention to ensure maximum net use and consequent reduction of malaria transmission.Peer Reviewe

    Evaluation of light microscopy and rapid diagnostic test for the detection of malaria under operational field conditions: a household survey in Ethiopia.

    Get PDF
    BACKGROUND: In most resource-poor settings, malaria is usually diagnosed based on clinical signs and symptoms and not by detection of parasites in the blood using microscopy or rapid diagnostic tests (RDT). In population-based malaria surveys, accurate diagnosis is important: microscopy provides the gold standard, whilst RDTs allow immediate findings and treatment. The concordance between RDTs and microscopy in low or unstable transmission areas has not been evaluated. OBJECTIVES: This study aimed to estimate the prevalence of malaria parasites in randomly selected malarious areas of Amhara, Oromia, and Southern Nations, Nationalities and Peoples' (SNNP) regions of Ethiopia, using microscopy and RDT, and to investigate the agreement between microscopy and RDT under field conditions. METHODS: A population-based survey was conducted in 224 randomly selected clusters of 25 households each in Amhara, Oromia and SNNP regions, between December 2006 and February 2007. Fingerpick blood samples from all persons living in even-numbered households were tested using two methods: light microscopy of Giemsa-stained blood slides; and RDT (ParaScreen device for Pan/Pf). RESULTS: A total of 13,960 people were eligible for malaria parasite testing of whom 11,504 (82%) were included in the analysis. Overall slide positivity rate was 4.1% (95% confidence interval [CI] 3.4-5.0%) while ParaScreen RDT was positive in 3.3% (95% CI 2.6-4.1%) of those tested. Considering microscopy as the gold standard, ParaScreen RDT exhibited high specificity (98.5%; 95% CI 98.3-98.7) and moderate sensitivity (47.5%; 95% CI 42.8-52.2) with a positive predictive value of 56.8% (95% CI 51.7-61.9) and negative predictive value of 97.6% (95% CI 97.6-98.1%) under field conditions. CONCLUSION: Blood slide microscopy remains the preferred option for population-based prevalence surveys of malaria parasitaemia. The level of agreement between microscopy and RDT warrants further investigation in different transmission settings and in the clinical situation

    Epidemiological and Entomological Evaluations after Six Years or More of Mass Drug Administration for Lymphatic Filariasis Elimination in Nigeria

    Get PDF
    The current strategy for interrupting transmission of lymphatic filariasis (LF) is annual mass drug administration (MDA), at good coverage, for 6 or more years. We describe our programmatic experience delivering the MDA combination of ivermectin and albendazole in Plateau and Nasarawa states in central Nigeria, where LF is caused by anopheline transmitted Wuchereria bancrofti. Baseline LF mapping using rapid blood antigen detection tests showed mean local government area (LGA) prevalence of 23% (range 4–62%). MDA was launched in 2000 and by 2003 had been scaled up to full geographic coverage in all 30 LGAs in the two states; over 26 million cumulative directly observed treatments were provided by community drug distributors over the intervention period. Reported treatment coverage for each round was ≥85% of the treatment eligible population of 3.7 million, although a population-based coverage survey in 2003 showed lower coverage (72.2%; 95% CI 65.5–79.0%). To determine impact on transmission, we monitored three LF infection parameters (microfilaremia, antigenemia, and mosquito infection) in 10 sentinel villages (SVs) serially. The last monitoring was done in 2009, when SVs had been treated for 7–10 years. Microfilaremia in 2009 decreased by 83% from baseline (from 4.9% to 0.8%); antigenemia by 67% (from 21.6% to 7.2%); mosquito infection rate (all larval stages) by 86% (from 3.1% to 0.4%); and mosquito infectivity rate (L3 stages) by 76% (from 1.3% to 0.3%). All changes were statistically significant. Results suggest that LF transmission has been interrupted in 5 of the 10 SVs, based on 2009 finding of microfilaremia ≥1% and/or L3 stages in mosquitoes. Four of the five SVs where transmission persists had baseline antigenemia prevalence of >25%. Longer or additional interventions (e.g., more frequent MDA treatments, insecticidal bed nets) should be considered for ‘hot spots’ where transmission is ongoing
    corecore