56,012 research outputs found
Thermal surveillance of active volcanoes using the LANDSAT-1 data collection system. Part 3: Heat discharge from Mount St. Helens, Washington
The author has identified the following significant results. Two thermal anomalies, A at 2740 m altitude on the north slope, and B between 2650 and 2750 m altitude on the southwest slope at the contact of the dacite summit dome of Mount St. Helens, Washington were confirmed by aerial infrared scanner surveys between 1971 and 1973. LANDSAT 1 data collection platform 6166, emplaced at site B anomaly, transmitted 482 sets of temperature values in 1973 and 1974, suitable for estimating the differential radiatin emission as 84 W/sq m, approximately equivalent to the Fourier conductive flux of 89 W/sq m in the upper 15 cm below the surface. The differential geothermal flux, including heat loss via evaporation and convection, was estimated at 376 W/sq m. Total energy yield of Mount St. Helens probably ranges between 0.1 and 0.4 x 10 to the 6th power W
Thermal surveillance of Cascade Range volcanoes using ERTS-1 multispectral scanner, aircraft imaging systems, and ground-based data communication platforms
A combination of infrared images depicting areas of thermal emission and ground calibration points have proved to be particularly useful in plotting time-dependent changes in surface temperatures and radiance and in delimiting areas of predominantly convective heat flow to the earth's surface in the Cascade Range and on Surtsey Volcano, Iceland. In an integrated experiment group using ERTS-1 multispectral scanner (MSS) and aircraft infrared imaging systems in conjunction with multiple thermistor arrays, volcano surface temperatures are relayed daily to Washington via data communication platform (DCP) transmitters and ERTS-1. ERTS-1 MSS imagery has revealed curvilinear structures at Lassen, the full extent of which have not been previously mapped. Interestingly, the major surface thermal manifestations at Lassen are aligned along these structures, particularly in the Warner Valley
Electron angular distributions above the dayside auroral oval
An electrostatic analyzer was employed on the Ariel 4 satellite to determine pitch angle distributions of electron intensities over the dayside auroral oval. Two major precipitation zones were encountered: an equatorward zone of broad spectra with intensities of approximately 1000 electrons/(sq cm-sec-sr-eV) and a poleward zone, the polar cusp, with intensities typical of those of the magnetosheath. Angular distributions within the equatorward zone are generally isotropic outside of the atmospheric backscatter cone. The precipitation mechanism appears to be pitch angle scattering near the distant magnetic equator. In contrast, pitch angle distributions within the polar cusp are often found to be strongly field aligned with intensities within the atmospheric loss cone greater by factors of approximately 10 than the mirroring intensities. These distributions are qualititatively similar to those for the inverted V precipitation events at later local times, and probably share a common acceleration mechanism with the inverted V phenomenon
Nonlinear modes of the tensor Dirac equation and CPT violation
Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated
Energization pf polar-cusp electrons at the noon meridian
Observations gained with an electrostatic analyzer on board the low altitude, polar orbiting Aeriel 4 satellite demonstrate that the directional, differential spectra of polar-cusp electron intensities are regulated by the sign of the interplanetary magnetic field (IMF) elevation angle. In the energy range 200 is approximately less than E is approximately less than 700 eV, spectra of polar cusp electron intensities were not observed to respond to changes in the sign of the IMF elevation angle. At greater densities, spectra were found to be significantly harder when the IMF angle of elevation was greater than 0 deg, with a factor of approximately 10 typical for 2-keV electron intensities. These enhanced intensities appear to be localized within approximately a one hour sector of magnetic local time centered on the noon meridian
Development of a motorized cryovalve for the control of superfluid liquid helium
Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described
- …