346 research outputs found
Instrument Zijn
Wat kan binnen het domein van de geestelijke begeleiding verstaan worden onder ‘de raadswerker als instrument’? Dat is de vraagstelling waarmee ik in mijn afstudeeronderzoek heb gewerkt. Aan de hand van een literatuurstudie en een empirisch onderzoek onder raadslieden kwam ik tot de conclusie dat we instrument zijn binnen de geestelijke begeleiding moeten begrijpen als een vrucht van persoonlijke, geestelijke ontwikkeling waarbij veel zelfonderzoek te doen is, en afstemming gezocht moet worden op een transcendente werkelijkheid. Kanaal zijn, poort of doorgeefluik voor de geestelijke dimensie, opdat deze een werking kan hebben in het moment waarop mensen werkelijk aanwezig komen in een gesprek, is in die zin een zeer specifieke bekwaamheid. Men dient verder open en ontvankelijk de werkelijkheid van dát moment te ‘lezen’. Deze vorm van ‘lezen’ gaat echter voorbij aan geleerde theorieën en methoden, maar berust op een innerlijke beschouwelijkheid die de eigen geconceptualiseerde bewustzijnspatronen die we allemaal kennen als mens doorbreekt. Komt men vanuit de afgestemdheid op zowel zichzelf, de geestelijke werkingskracht als ook de concrete aanwezigheid van de ander en diens situatie tot inzicht, dan kan dit worden ingebracht als mogelijk antwoord. Het is tot slot een voedende en dankbare aangelegenheid voor de raadswerker als instrument om zo te mogen functioneren, zo komt althans uit dit onderzoek naar voren
A probabilistic approach to Zhang's sandpile model
The current literature on sandpile models mainly deals with the abelian
sandpile model (ASM) and its variants. We treat a less known - but equally
interesting - model, namely Zhang's sandpile. This model differs in two aspects
from the ASM. First, additions are not discrete, but random amounts with a
uniform distribution on an interval . Second, if a site topples - which
happens if the amount at that site is larger than a threshold value
(which is a model parameter), then it divides its entire content in equal
amounts among its neighbors. Zhang conjectured that in the infinite volume
limit, this model tends to behave like the ASM in the sense that the stationary
measure for the system in large volumes tends to be peaked narrowly around a
finite set. This belief is supported by simulations, but so far not by
analytical investigations.
We study the stationary distribution of this model in one dimension, for
several values of and . When there is only one site, exact computations
are possible. Our main result concerns the limit as the number of sites tends
to infinity, in the one-dimensional case. We find that the stationary
distribution, in the case , indeed tends to that of the ASM (up
to a scaling factor), in agreement with Zhang's conjecture. For the case ,
we provide strong evidence that the stationary expectation tends to
.Comment: 47 pages, 3 figure
In-medium QCD and Cherenkov gluons
The equations of in-medium gluodynamics are proposed. Their classical lowest
order solution is explicitly shown for a color charge moving with constant
speed. For nuclear permittivity larger than 1 it describes emission of
Cherenkov gluons resembling results of classical electrodynamics. The choice of
nuclear permittivity and Lorentz-invariance of the problem are discussed.
Effects induced by the transversely and longitudinally moving (relative to the
collision axis) partons at LHC energies are described.Comment: 13 p., misprints correcte
On the Possible Common Nature of Double Extensive Air Showers and Aligned Events
Double Extensive Air Showers and aligned events were discovered at energies E
{\gtsim} 1016 eV over fourth century back. But up to now there is no
sufficiently identical explanation of their nature. In this paper it is
expected that both types of events are the result of breakup of the string
formed in the collisions of super high energy particles
The Robinson-Trautman Type III Prolongation Structure Contains K
The minimal prolongation structure for the Robinson-Trautman equations of
Petrov type III is shown to always include the infinite-dimensional,
contragredient algebra, K, which is of infinite growth. Knowledge of
faithful representations of this algebra would allow the determination of
B\"acklund transformations to evolve new solutions.Comment: 20 pages, plain TeX, no figures, submitted to Commun. Math. Phy
QCD in the nuclear medium and effects due to Cherenkov gluons
The equations of in-medium gluodynamics are proposed. Their classical lowest
order solution is explicitly shown for a color charge moving with constant
speed. For nuclear permittivity larger than 1 it describes emission of
Cherenkov gluons resembling results of classical electrodynamics. The values of
the real and imaginary parts of the nuclear permittivity are obtained from the
fits to experimental data on the double-humped structure around the away-side
jet obtained at RHIC. The dispersion of the nuclear permittivity is predicted
by comparing the RHIC, SPS and cosmic ray data. This is important for LHC
experiments. Cherenkov gluons may be responsible for the asymmetry of dilepton
mass spectra near rho-meson, observed in the SPS experiment with excess in the
low-mass wing of the resonance. This feature is predicted to be common for all
resonances. The "color rainbow" quantum effect might appear according to higher
order terms of in-medium QCD if the nuclear permittivity depends on color.Comment: 29 p., 4 figs; for "Phys. Atom. Nucl." volume dedicated to 80th
birthday of L.B. Okun; minor corrections on pp. 11 and 13 in v
Characterization of neutrino signals with radiopulses in dense media through the LPM effect
We discuss the possibilities of detecting radio pulses from high energy
showers in ice, such as those produced by PeV and EeV neutrino interactions. It
is shown that the rich radiation pattern structure in the 100 MHz to few GHz
allows the separation of electromagnetic showers induced by photons or
electrons above 100 PeV from those induced by hadrons. This opens up the
possibility of measuring the energy fraction transmitted to the electron in a
charged current electron neutrino interaction with adequate sampling of the
angular distribution of the signal. The radio technique has the potential to
complement conventional high energy neutrino detectors with flavor information.Comment: 5 pages, 4 ps figures. Submitted to Phys. Rev. Let
Dynamical model and nonextensive statistical mechanics of a market index on large time windows
The shape and tails of partial distribution functions (PDF) for a financial
signal, i.e. the S&P500 and the turbulent nature of the markets are linked
through a model encompassing Tsallis nonextensive statistics and leading to
evolution equations of the Langevin and Fokker-Planck type. A model originally
proposed to describe the intermittent behavior of turbulent flows describes the
behavior of normalized log-returns for such a financial market index, for small
and large time windows, both for small and large log-returns. These turbulent
market volatility (of normalized log-returns) distributions can be sufficiently
well fitted with a -distribution. The transition between the small time
scale model of nonextensive, intermittent process and the large scale Gaussian
extensive homogeneous fluctuation picture is found to be at a 200 day
time lag. The intermittency exponent () in the framework of the
Kolmogorov log-normal model is found to be related to the scaling exponent of
the PDF moments, -thereby giving weight to the model. The large value of
points to a large number of cascades in the turbulent process. The
first Kramers-Moyal coefficient in the Fokker-Planck equation is almost equal
to zero, indicating ''no restoring force''. A comparison is made between
normalized log-returns and mere price increments.Comment: 40 pages, 14 figures; accepted for publication in Phys Rev
Rms-flux relation of Cyg X-1 with RXTE: dipping and nondipping cases
The rms (root mean square) variability is the parameter for understanding the
emission temporal properties of X-ray binaries (XRBs) and active galactic
nuclei (AGN).
The rms-flux relation with Rossi X-ray Timing Explorer (RXTE) data for the
dips and nondip of black hole Cyg X-1 has been investigated in this paper. Our
results show that there exist the linear rms-flux relations in the frequency
range 0.1-10 Hz for the dipping light curve. Moreover, this linear relation
still remains during the nondip regime, but with the steeper slope than that of
the dipping case in the low energy band. For the high energy band, the slopes
of the dipping and nondipping cases are hardly constant within errors. The
explanations of the results have been made by means of the ``Propagating
Perturbation'' model of Lyubarskii (1997).Comment: 15 pages, 12 figures, Accepted for publication in Astrophysics &
Space Scienc
Solution of generalized fractional reaction-diffusion equations
This paper deals with the investigation of a closed form solution of a
generalized fractional reaction-diffusion equation. The solution of the
proposed problem is developed in a compact form in terms of the H-function by
the application of direct and inverse Laplace and Fourier transforms.
Fractional order moments and the asymptotic expansion of the solution are also
obtained.Comment: LaTeX, 18 pages, corrected typo
- …