20,932 research outputs found
Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes from mammalian cells
Specific antibodies against rap1A and rap1B small GTP-binding proteins were generated by immunization of rabbits with peptides derived from the C-terminus of the processed proteins. Immunoblot analysis of membranes from several mammalian cell lines and human thrombocytes with affinity-purified antibodies against rap1A or rap1B demonstrated the presence of multiple immunoreactive proteins in the 22-23 kDa range, although at strongly varying levels. Whereas both proteins were present in substantial amounts in membranes from myelocytic HL-60, K-562 and HEL cells, they were hardly detectable in membranes from lymphoma U-937 and S49.1 cyc- cells. Membranes from human thrombocytes and 3T3-Swiss Albino fibroblasts showed strong rap1B immunoreactivity, whereas rap1A protein was present in much lower amounts. In the cytosol of HL-60 cells, only small amounts of rap1A and rap1B proteins were detected, unless the cells were treated with lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase, suggesting that both proteins are isoprenylated. By comparison with recombinant proteins, the ratio of rap1A/ras proteins in membranes from HL-60 cells was estimated to be about 4:1. An antiserum directed against the C-terminus of rap2 reacted strongly with recombinant rap2, but not with membranes from tested mammalian cells. In conclusion, rap1A and rap1B proteins are distributed differentially among membranes from various mammalian cell types and are isoprenylated in HL-60 cells
Posterior Cervical Spine Crisscross Fixation: Biomechanical Evaluation
Background Biomechanical/anatomic limitations may limit the successful implantation, maintenance, and risk acceptance of posterior cervical plate/rod fixation for one stage decompression-fusion. A method of posterior fixation (crisscross) that resolves biomechanical deficiencies of previous facet wiring techniques and not reliant upon screw implantation has been devised. The biomechanical performance of the new method of facet fixation was compared to the traditional lateral mass plate/screw fixation method. Methods Thirteen human cadaver spine segments (C2-T1) were tested under flexion-compression loading and four were evaluated additionally under pure-moment load. Preparations were evaluated in a sequence of surgical alterations with intact, laminectomy, lateral mass plate/screw fixation, and crisscross facet fixation using forces, displacements and kinematics. Findings Combined loading demonstrated significantly lower bending stiffness (p \u3c 0.05) between laminectomy compared to crisscross and lateral mass plate/screw preparations. Crisscross fixation showed a comparative tendency for increased stiffness. The increased overall motion induced by laminectomy was resolved by both fixation techniques, with crisscross fixation demonstrating a comparatively more uniform change in segmental motions. Interpretation The crisscross technique of facet fixation offers immediate mechanical stability with resolution of increased flexural rotations induced by multi-level laminectomy. Many of the anatomic limitations and potentially deleterious variables that may be associated with multi-level screw fixation are not associated with facet wire passage, and the subsequent fixation using a pattern of wire connection crossing each facet joint exhibits a comparatively more uniform load distribution. Crisscross wire fixation is a valuable addition to the surgical armamentarium for extensive posterior cervical single-stage decompression-fixation
Transition from the Seniority to the Anharmonic Vibrator Regime in Nuclei
A recent analysis of experimental energy systematics suggests that all
collective nuclei fall into one of three classes -- seniority, anharmonic
vibrational, or rotational -- with sharp phase transitions between them. We
investigate the transition from the seniority to the anharmonic vibrator regime
within a shell model framework involving a single large j-orbit. The
calculations qualitatively reproduce the observed transitional behavior, both
for U(5) like and O(6) like nuclei. They also confirm the preeminent role
played by the neutron-proton interaction in producing the phase transition.Comment: 9 pages with 2 tables, submitted to Physical Review C, November 199
Remarriage
An interview with Frank F. Furstenberg, Jr, PhD, Professor, Department of Sociology, University of Pennsylvania, Philadelphia. The interview was conducted by Harold I. Lief, MD, Professor, Department of Psychiatry, University of Pennsylvania School of Medicine and Pennsylvania Hospital, Philadelphia
On the renormalization group flow of f(R)-gravity
We use the functional renormalization group equation for quantum gravity to
construct a non-perturbative flow equation for modified gravity theories of the
form . Based on this equation we show that certain
gravitational interactions monomials can be consistently decoupled from the
renormalization group (RG) flow and reproduce recent results on the asymptotic
safety conjecture. The non-perturbative RG flow of non-local extensions of the
Einstein-Hilbert truncation including and interactions is investigated in detail. The inclusion of
such interactions resolves the infrared singularities plaguing the RG
trajectories with positive cosmological constant in previous truncations. In
particular, in some -truncations all physical trajectories emanate from
a Non-Gaussian (UV) fixed point and are well-defined on all RG scales. The RG
flow of the -truncation contains an infrared attractor which drives a
positive cosmological constant to zero dynamically.Comment: 55 pages, 7 figures, typos corrected, references added, version to
appear in Phys. Rev.
Evaporation and growth of crystals - propagation of step density compression waves at vicinal surfaces
We studied the step dynamics during crystal sublimation and growth in the
limit of fast surface diffusion and slow kinetics of atom attachment-detachment
at the steps. For this limit we formulate a model free of the quasi-static
approximation in the calculation of the adatom concentration on the terraces at
the crystal surface. Such a model provides a relatively simple way to study the
linear stability of a step train in a presence of step-step repulsion and an
absence of destabilizing factors (as Schwoebel effect, surface electromigration
etc.). The central result is that a critical velocity of the steps in the train
exists which separates the stability and instability regimes. When the step
velocity exceeds its critical value the plot of these trajectories manifests
clear space and time periodicity (step density compression waves propagate on
the vicinal surface). This ordered motion of the steps is preceded by a
relatively short transition period of disordered step dynamics.Comment: 18 pages, 6 figure
Electronic correlations in vanadium chalcogenides: BaVSe3 versus BaVS3
Albeit structurally and electronically very similar, at low temperature the
quasi-one-dimensional vanadium sulfide BaVS3 shows a metal-to-insulator
transition via the appearance of a charge-density-wave state, while BaVSe3
apparently remains metallic down to zero temperature. This different behavior
upon cooling is studied by means of density functional theory and its
combination with the dynamical mean-field theory and the rotationally-invariant
slave-boson method. We reveal several subtle differences between these
chalcogenides that provide indications for the deviant behavior of BaVSe3 at
low temperature. In this regard, a smaller Hubbard U in line with an increased
relevance of the Hund's exchange J plays a vital role.Comment: 16 pages, 11 figures, published versio
Effect of pressure on the polarized infrared optical response of quasi-one-dimensional LaTiO
The pressure-induced changes in the optical properties of the
quasi-one-dimensional conductor LaTiO were studied by
polarization-dependent mid-infrared micro-spectroscopy at room temperature. For
the polarization of the incident radiation parallel to the conducting
direction, the optical conductivity spectrum shows a pronounced mid-infrared
absorption band, exhibiting a shift to lower frequencies and an increase in
oscillator strength with increasing pressure. On the basis of its pressure
dependence, interpretations of the band in terms of electronic transitions and
polaronic excitations are discussed. Discontinuous changes in the optical
response near 15 GPa are in agreement with a recently reported pressure-induced
structural phase transition and indicate the onset of a dimensional crossover
in this highly anisotropic system.Comment: 7 pages, 7 figure
Spectra of Harmonium in a magnetic field using an initial value representation of the semiclassical propagator
For two Coulombically interacting electrons in a quantum dot with harmonic
confinement and a constant magnetic field, we show that time-dependent
semiclassical calculations using the Herman-Kluk initial value representation
of the propagator lead to eigenvalues of the same accuracy as WKB calculations
with Langer correction. The latter are restricted to integrable systems,
however, whereas the time-dependent initial value approach allows for
applications to high-dimensional, possibly chaotic dynamics and is extendable
to arbitrary shapes of the potential.Comment: 11 pages, 1 figur
- …