397 research outputs found
Subharmonic Locking in Josephson Weak Links
After some controversy, it has been shown that subharmonic voltage (phase) locking does not exist in the ac-driven overdamped resistively shunted junction model of a Josephson weak link. We predict that for a very similar system of a pair of coupled links without ac drive, mutual subharmonic locking can take place. We demonstrate our thesis both by a careful numerical simulation of the exact equations of the model and by a second-order analytical perturbation calculation based on the coupling parameter
Radiative Corrections to Fixed Target Moller Scattering Including Hard Bremsstrahlung Effects
We present a calculation of the complete electroweak radiative
corrections to the Moller scattering process e^-e^- -> e^-e^-, including hard
bremsstrahlung contributions. We study the effects of these corrections on both
the total cross section and polarization asymmetry measured in low energy fixed
target experiments. Numerical results are presented for the experimental cuts
relevant for E-158, a fixed target e^-e^- experiment being performed at SLAC;
the effect of hard bremsstrahlung is to shift the measured polarization
asymmetry by approximately +4%. We briefly discuss the remaining theoretical
uncertainty in the prediction for the low energy Moller scattering polarization
asymmetry.Comment: 22 pgs; minor clarifications added and typos fixe
Lepton Flavor Violation in Z and Lepton Decays in Supersymmetric Models
The observation of charged lepton flavor non-conservation would be a clear
signature of physics beyond the Standard Model. In particular, supersymmetric
(SUSY) models introduce mixings in the sneutrino and the charged slepton
sectors which could imply flavor-changing processes at rates accessible to
upcoming experiments. In this paper we analyze the possibility to observe Z -->
lep_I lep_J in the GigaZ option of TESLA at DESY. We show that although models
with SUSY masses above the current limits could predict a branching ratio BR(Z
--> mu e) accessible to the experiment, they would imply an unobserved rate of
mu --> e gamma and thus are excluded. In models with a small mixing angle
between the first and the third (or the second and the third) slepton families
GigaZ could observe Z --> tau mu (or Z --> tau e) consistently with present
bounds on lep_J --> lep_I gamma. In contrast, if the mixing angles between the
three slepton families are large the bounds from mu --> e gamma push these
processes below the reach of GigaZ. We show that in this case the masses of the
three slepton families must be strongly degenerated (with mass differences of
order 10^{-3}). We update the limits on the slepton mass insertions
delta_{LL,RR,LR} and discuss the correlation between flavor changing and g_mu-2
in SUSY models.Comment: 23 pages, 6 figures. Version to appear in Phys. Rev.
Thermal Decay of the Cosmological Constant into Black Holes
We show that the cosmological constant may be reduced by thermal production
of membranes by the cosmological horizon, analogous to a particle ``going over
the top of the potential barrier", rather than tunneling through it. The
membranes are endowed with charge associated with the gauge invariance of an
antisymmetric gauge potential. In this new process, the membrane collapses into
a black hole, thus the net effect is to produce black holes out of the vacuum
energy associated with the cosmological constant. We study here the
corresponding Euclidean configurations ("thermalons"), and calculate the
probability for the process in the leading semiclassical approximation.Comment: 14 pages, 6 figures. Minor correction
A weakly stable algorithm for general Toeplitz systems
We show that a fast algorithm for the QR factorization of a Toeplitz or
Hankel matrix A is weakly stable in the sense that R^T.R is close to A^T.A.
Thus, when the algorithm is used to solve the semi-normal equations R^T.Rx =
A^Tb, we obtain a weakly stable method for the solution of a nonsingular
Toeplitz or Hankel linear system Ax = b. The algorithm also applies to the
solution of the full-rank Toeplitz or Hankel least squares problem.Comment: 17 pages. An old Technical Report with postscript added. For further
details, see http://wwwmaths.anu.edu.au/~brent/pub/pub143.htm
QCD Form Factors and Hadron Helicity Non-Conservation
Recent data for the ratio shocked the
community by disobeying expectations held for 50 years. We examine the status
of perturbative QCD predictions for helicity-flip form factors. Contrary to
common belief, we find there is no rule of hadron helicity conservation for
form factors. Instead the analysis yields an inequality that the leading power
of helicity-flip processes may equal or exceed the power of helicity conserving
processes. Numerical calculations support the rule, and extend the result to
the regime of laboratory momentum transfer . Quark orbital angular
momentum, an important feature of the helicity flip processes, may play a role
in all form factors at large , depending on the quark wave functions.Comment: 25 pages, 5 figure
Bessel Process and Conformal Quantum Mechanics
Different aspects of the connection between the Bessel process and the
conformal quantum mechanics (CQM) are discussed. The meaning of the possible
generalizations of both models is investigated with respect to the other model,
including self adjoint extension of the CQM. Some other generalizations such as
the Bessel process in the wide sense and radial Ornstein- Uhlenbeck process are
discussed with respect to the underlying conformal group structure.Comment: 28 Page
The Cerenkov effect revisited: from swimming ducks to zero modes in gravitational analogs
We present an interdisciplinary review of the generalized Cerenkov emission
of radiation from uniformly moving sources in the different contexts of
classical electromagnetism, superfluid hydrodynamics, and classical
hydrodynamics. The details of each specific physical systems enter our theory
via the dispersion law of the excitations. A geometrical recipe to obtain the
emission patterns in both real and wavevector space from the geometrical shape
of the dispersion law is discussed and applied to a number of cases of current
experimental interest. Some consequences of these emission processes onto the
stability of condensed-matter analogs of gravitational systems are finally
illustrated.Comment: Lecture Notes at the IX SIGRAV School on "Analogue Gravity" in Como,
Italy from May 16th-21th, 201
Functional determinants for general self-adjoint extensions of Laplace-type operators resulting from the generalized cone
In this article we consider the zeta regularized determinant of Laplace-type
operators on the generalized cone. For {\it arbitrary} self-adjoint extensions
of a matrix of singular ordinary differential operators modelled on the
generalized cone, a closed expression for the determinant is given. The result
involves a determinant of an endomorphism of a finite-dimensional vector space,
the endomorphism encoding the self-adjoint extension chosen. For particular
examples, like the Friedrich's extension, the answer is easily extracted from
the general result. In combination with \cite{BKD}, a closed expression for the
determinant of an arbitrary self-adjoint extension of the full Laplace-type
operator on the generalized cone can be obtained.Comment: 27 pages, 2 figures; to appear in Manuscripta Mathematic
Observational Dutch Young Symptomatic StrokE studY (ODYSSEY): Study rationale and protocol of a multicentre prospective cohort study
Background: The proportion of strokes occurring in younger adults has been rising over the past decade. Due to the far longer life expectancy in the young, stroke in this group has an even larger socio-economic impact. However, information on etiology and prognosis remains scarce.Methods/design: ODYSSEY is a multicentre prospective cohort study on the prognosis and risk factors of patients with a first-ever TIA, ischemic stroke or intracerebral hemorrhage aged 18 to 49 years. Our aim is to include 1500 patients. Primary outcome will be all cause mortality and risk of recurrent vascular events. Secondary outcome will be the risk of post-stroke epilepsy and cognitive impairment. Patients will complete structured questionnaires on outcome measures and risk factors. Both well-documented and less well-documented risk factors and potentially acute trigger factors will be investigated. Patients will be followed every 6 months for at least 3 years. In addition, an extensive neuropsychological assessment will be administered both at baseline and 1 year after the stroke/TIA. Furthermore we will include 250 stroke-free controls, who will complete baseline assessment and one neuropsychological assessment.Discussion: ODYSSEY is designed to prospectively determine prognosis after a young stroke and get more insight into etiology of patients with a TIA, ischemic stroke and intracerebral hemorrhage in patients aged 18 to 49 years old in a large sample size
- …