2,938 research outputs found
An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989)
Mon. Wea. Rev., 139, 1447-1462The article of record as published may be located at http://dx.doi.org/10.1175/2010MWR3435.
Neutron Correlations in the Decay of the First Excited State of 11Li
The decay of unbound excited 11Li was measured after being populated by a two-proton removal from a 13B beam at 71 MeV/nucleon. Decay energy spectra and Jacobi plots were obtained from measurements of the momentum vectors of the 9Li fragment and neutrons. A resonance at an excitation energy of ∼1.2 MeV was observed. The kinematics of the decay are equally well fit by a simple dineutron-like model or a phase-space model that includes final state interactions. A sequential decay model can be excluded
Population of 13Be in a Nucleon Exchange Reaction
The neutron-unbound nucleus 13Be was populated with a nucleon-exchange
reaction from a 71 MeV/u secondary 13B beam. The decay energy spectrum was
reconstructed using invariant mass spectroscopy based on 12Be fragments in
coincidence with neutrons. The data could be described with an s-wave resonance
at E = 0.73(9) MeV with a width of Gamma = 1.98(34) MeV and a d-wave resonance
at E = 2.56(13) MeV with a width of Gamma = 2.29(73) MeV. The observed spectral
shape is consistent with previous one-proton removal reaction measurements from
14B.Comment: Published in Phys. Rev.
Close Packing of Atoms, Geometric Frustration and the Formation of Heterogeneous States in Crystals
To describe structural peculiarities in inhomogeneous media caused by the
tendency to the close packing of atoms a formalism based on the using of the
Riemann geometry methods (which were successfully applied lately to the
description of structures of quasicrystals and glasses) is developed. Basing on
this formalism we find in particular the criterion of stability of precipitates
of the Frank-Kasper phases in metallic systems. The nature of the ''rhenium
effect'' in W-Re alloys is discussed.Comment: 14 pages, RevTex, 2 PostScript figure
Polytetrahedral Clusters
By studying the structures of clusters bound by a model potential that
favours polytetrahedral order, we find a previously unknown series of `magic
numbers' (i.e. sizes of special stability) whose polytetrahedral structures are
characterized by disclination networks that are analogous to hydrocarbons.Comment: 4 pages, 4 figure
The D9N, N291S and S447X variants in the lipoprotein lipase (LPL) gene are not associated with Type III Hyperlipidemia
<p>Abstract</p> <p>Background</p> <p>Type III hyperlipidemia (Type III HLP) is associated with homozygosity for the ε2 allele of the APOE gene. However only about 10% of ε2 homozygotes develop Type III HLP and it is assumed that additional genetic and/or environmental factors are required for its development. Common variants in the LPL gene have been proposed as likely genetic co-factors.</p> <p>Methods</p> <p>The frequency of the LPL SNPs D9N, N291S and S447X in 100 patients with hyperlipidemia and APOE2/2 genotype has been determined and compared to that in healthy blood donors and patients with hyperlipidemia.</p> <p>Results</p> <p>There were no statistically significant difference in the frequencies of the variants between APOE2/2 patients and controls.</p> <p>Conclusion</p> <p>It is unlikely that the D9N, N291S or S447X variants in the LPL gene play an important role in the development of Type III HLP.</p
Recommended from our members
Boundary layer recovery and precipitation symmetrization preceding rapid intensification of tropical cyclones under shear
This study investigates the precipitation symmetrization preceding rapid intensification (RI) of tropical cyclones (TCs) experiencing vertical wind shear by analyzing numerical simulations of Typhoon Mujigae (2015) with warm (CTL) and relatively cool (S1) sea surface temperatures (SSTs). A novel finding is that precipitation symmetrization is maintained by the continuous development of deep convection along the inward flank of a convective precipitation shield (CPS), especially in the downwind part. Beneath the CPS, downdrafts flush the boundary layer with low-entropy parcels. These low-entropy parcels do not necessarily weaken the TCs; instead, they are “recycled” in the TC circulation, gradually recovered by positive enthalpy fluxes, and develop into convection during their propagation toward a downshear convergence zone. Along-trajectory vertical momentum budget analyses reveal the predominant role of buoyancy acceleration in the convective development in both experiments. The boundary layer recovery is more efficient for warmer SST, and the stronger buoyancy acceleration accounts for the higher probability of these parcels developing into deep convection in the downwind part of the CPS, which helps maintain the precipitation symmetrization in CTL. In contrast, less efficient boundary layer recovery and less upshear deep convection hinder the precipitation symmetrization in S1. These findings highlight the key role of boundary layer recovery in regulating the precipitation symmetrization and upshear deep convection, which further accounts for an earlier RI onset timing of the CTL TC. The inward rebuilding pathway also illuminates why deep convection is preferentially located inside the radius of maximum wind of sheared TCs undergoing RI
Recommended from our members
A Review and Evaluation of Planetary Boundary Layer Parameterizations in Hurricane Weather Research and Forecasting Model Using Idealized Simulations and Observations
This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades.</div
Low-lying Neutron Unbound States In Be-12
The neutron decay of an unbound resonance in Be-12 has been measured at 1243 +/- 21 keV decay energy with a width of 634 +/- 60 keV. This state was populated with a one-proton removal reaction from a 71 MeV/u B-13 beam incident upon a beryllium target. The invariant mass reconstruction of the resonance was achieved by measuring the daughter fragment in coincidence with neutrons. Despite being above the 2n separation energy, the state decays predominantly by the emission of one neutron to Be-11, setting an upper limit on the branching ratio for the two-neutron decay channel to Be-10 of less than 5%. From the characteristics of the population and decay of the resonance, it is concluded that this state cannot correspond to the previously observed state at 4580 +/- 5 keV
- …