5 research outputs found

    Cell type-specific delivery by modular envelope design

    No full text
    Abstract The delivery of genetic cargo remains one of the largest obstacles to the successful translation of experimental therapies, in large part due to the absence of targetable delivery vectors. Enveloped delivery modalities use viral envelope proteins, which determine tropism and induce membrane fusion. Here we develop DIRECTED (Delivery to Intended REcipient Cells Through Envelope Design), a modular platform that consists of separate fusion and targeting components. To achieve high modularity and programmable cell type specificity, we develop multiple strategies to recruit or immobilize antibodies on the viral envelope, including a chimeric antibody binding protein and a SNAP-tag enabling the use of antibodies or other proteins as targeting molecules. Moreover, we show that fusogens from multiple viral families are compatible with DIRECTED and that DIRECTED components can target multiple delivery chassis (e.g., lentivirus and MMLV gag) to specific cell types, including primary human T cells in PBMCs and whole blood

    Computationally Guided Intracerebral Drug Delivery via Chronically Implanted Microdevices

    No full text
    Treatments for neurologic diseases are often limited in efficacy due to poor spatial and temporal control over their delivery. Intracerebral delivery partially overcomes this by directly infusing therapeutics to the brain. Brain structures, however, are nonuniform and irregularly shaped, precluding complete target coverage by a single bolus without significant off-target effects and possible toxicity. Nearly complete coverage is crucial for effective modulation of these structures. We present a framework with computational mapping algorithms for neural drug delivery (COMMAND) to guide multi-bolus targeting of brain structures that maximizes coverage and minimizes off-target leakage. Custom-fabricated chronic neural implants leverage rational fluidic design to achieve multi-bolus delivery in rodents through a single infusion of radioactive tracer (Cu-64). The resulting spatial distributions replicate computed spatial coverage with 5% error in vivo, as detected by positron emission tomography. COMMAND potentially enables accurate, efficacious targeting of discrete brain regions.National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant R01 EB016101)National Cancer Institute (U.S.) (Grant P30-CA14051

    Mostly natural sequencing-by-synthesis for scRNA-seq using Ultima sequencing

    No full text
    AbstractHere we introduce a mostly natural sequencing-by-synthesis (mnSBS) method for single-cell RNA sequencing (scRNA-seq), adapted to the Ultima genomics platform, and systematically benchmark it against current scRNA-seq technology. mnSBS uses mostly natural, unmodified nucleotides and only a low fraction of fluorescently labeled nucleotides, which allows for high polymerase processivity and lower costs. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5′ and 3′ scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Benchmarking shows that results from mnSBS-based scRNA-seq are very similar to those using Illumina sequencing, with minor differences in results related to the position of reads relative to annotated gene boundaries, owing to single-end reads of Ultima being closer to gene ends than reads from Illumina. The method is thus compatible with state-of-the-art scRNA-seq libraries independent of the sequencing technology. We expect mnSBS to be of particular utility for cost-effective large-scale scRNA-seq projects.</jats:p

    Multimodal pooled Perturb-CITE-seq screens in patient models define mechanisms of cancer immune evasion

    No full text
    © 2021, The Author(s), under exclusive licence to Springer Nature America, Inc. Resistance to immune checkpoint inhibitors (ICIs) is a key challenge in cancer therapy. To elucidate underlying mechanisms, we developed Perturb-CITE-sequencing (Perturb-CITE-seq), enabling pooled clustered regularly interspaced short palindromic repeat (CRISPR)–Cas9 perturbations with single-cell transcriptome and protein readouts. In patient-derived melanoma cells and autologous tumor-infiltrating lymphocyte (TIL) co-cultures, we profiled transcriptomes and 20 proteins in ~218,000 cells under ~750 perturbations associated with cancer cell-intrinsic ICI resistance (ICR). We recover known mechanisms of resistance, including defects in the interferon-γ (IFN-γ)–JAK/STAT and antigen-presentation pathways in RNA, protein and perturbation space, and new ones, including loss/downregulation of CD58. Loss of CD58 conferred immune evasion in multiple co-culture models and was downregulated in tumors of melanoma patients with ICR. CD58 protein expression was not induced by IFN-γ signaling, and CD58 loss conferred immune evasion without compromising major histocompatibility complex (MHC) expression, suggesting that it acts orthogonally to known mechanisms of ICR. This work provides a framework for the deciphering of complex mechanisms by large-scale perturbation screens with multimodal, single-cell readouts, and discovers potentially clinically relevant mechanisms of immune evasion
    corecore