73 research outputs found
Magnetic properties of GdZn (T = Fe, Co) investigated by X-ray diffraction and spectroscopy
We investigate the magnetic and electronic properties of the GdZn
( = Fe and Co) compounds using X-ray resonant magnetic scattering (XRMS),
X-ray absorption near-edge structure (XANES) and X-ray magnetic circular
dichroism (XMCD) techniques. The XRMS measurements reveal that the
GdCoZn compound has a commensurate antiferromagnetic spin structure
with a magnetic propagation vector =
below the N\'eel temperature ( 5.7 K). Only the Gd ions carry a magnetic moment forming an
antiferromagnetic structure with magnetic representation . For the
ferromagnetic GdFeZn compound, an extensive investigation was
performed at low temperature and under magnetic field using XANES and XMCD
techniques. A strong XMCD signal of about 12.5 and 9.7 is observed
below the Curie temperature ( 85 K) at the Gd- and edges,
respectively. In addition, a small magnetic signal of about 0.06 of the
jump is recorded at the Zn -edge suggesting that the Zn 4 states are spin
polarized by the Gd 5 extended orbitals
High-magnetic field lattice length changes in URu2Si2
We report high magnetic field (up to 45 T) c-axis thermal expansion and
magnetostriction experiments on URu2Si2 single crystals. The sample length
change associated with the transition to the hidden order phase becomes
increasingly discontinous as the magnetic field is raised above 25 T. The
re-entrant ordered phase III is clearly observed in both the thermal expansion
and magnetostriction above 36 T, in good agreement with previous results. The
sample length is also discontinuous at the boundaries of this phase, mainly at
the upper boundary. A change in the sign of the coefficient of
thermal-expansion is observed at the metamagnetic transition (B_M = 38 T) which
is likely related to the existence of a quantum critical end point.Comment: 5 pages, 4 figures, to be published in PR
Magnetic Properties Of Gdt2zn20 (t=fe, Co) Investigated By X-ray Diffraction And Spectroscopy
We investigate the magnetic and electronic properties of the GdT2Zn20 (T=Fe and Co) compounds using x-ray resonant magnetic scattering (XRMS), x-ray absorption near-edge structure (XANES), and x-ray magnetic circular dichroism (XMCD). The XRMS measurements reveal that GdCo2Zn20 has a commensurate antiferromagnetic spin structure with a magnetic propagation vector Ï - =(12,12,12) below the NĂ©el temperature (TNâŒ5.7 K). Only the Gd ions carry a magnetic moment forming an antiferromagnetic structure with magnetic representation Î6. For the ferromagnetic GdFe2Zn20 compound, an extensive investigation was performed at low temperature and under magnetic field using XANES and XMCD. A strong XMCD signal of about 12.5% and 9.7% is observed below the Curie temperature (TCâŒ85K) at the Gd L2 and L3 edges, respectively. In addition, a small magnetic signal of about 0.06% of the jump is recorded at the Zn K edge, suggesting that the Zn 4p states are spin polarized by the Gd 5d extended orbitals. © 2016 American Physical Society.93
Magnetic and orbital correlations in multiferroic CaMnO probed by x-ray resonant elastic scattering
The quadruple perovskite CaMnO is a topical multiferroic, in which
the hierarchy of electronic correlations driving structural distortions,
modulated magnetism, and orbital order is not well known and may vary with
temperature. x-ray resonant elastic scattering (XRES) provides a
momentum-resolved tool to study these phenomena, even in very small single
crystals, with valuable information encoded in its polarization- and
energy-dependence. We present an application of this technique to
CaMnO. By polarization analysis, it is possible to distinguish
superstructure reflections associated with magnetic order and orbital order.
Given the high momentum resolution, we resolve a previously unknown splitting
of an orbital order superstructure peak, associated with a distinct
\textit{locked-in} phase at low temperatures. A second set of orbital order
superstructure peaks can then be interpreted as a second-harmonic orbital
signal. Surprisingly, the intensities of the first- and second-harmonic orbital
signal show disparate temperature and polarization dependence. This orbital
re-ordering may be driven by an exchange mechanism, that becomes dominant over
the Jahn-Teller instability at low temperature.Comment: 6 pages, 4 figures and 1 supplementary with 3 figure
Clusters, phason elasticity, and entropic stabilisation: a theory perspective
Personal comments are made about the title subjects, including: the relation
of Friedel oscillations to Hume-Rothery stabilisation; how calculations may
resolve the random-tiling versus ideal pictures of quasicrystals; and the role
of entropies apart from tile-configurational.Comment: IOP macros; 8pp, 1 figure. In press, Phil. Mag. A (Proc. Intl. Conf.
on Quasicrystals 9, Ames Iowa, May 2005
Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet
Ruthenium compounds play prominent roles in materials research ranging from
oxide electronics to catalysis, and serve as a platform for fundamental
concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and
solid-state analogues of the Higgs mode in particle physics. However, basic
questions about the electronic structure of ruthenates remain unanswered,
because several key parameters (including the Hund's-rule, spin-orbit, and
exchange interactions) are comparable in magnitude, and their interplay is
poorly understood - partly due to difficulties in synthesizing sizable single
crystals for spectroscopic experiments. Here we introduce a resonant inelastic
x-ray scattering (RIXS) technique capable of probing collective modes in
microcrystals of -electron materials. We present a comprehensive set of
data on spin waves and spin-state transitions in the honeycomb antiferromagnet
SrRuO, which possesses an unusually high N\'eel temperature. The
new RIXS method provides fresh insight into the unconventional magnetism of
SrRuO, and enables momentum-resolved spectroscopy of a large class
of transition-metal compounds.Comment: The original submitted version of the published manuscript.
https://www.nature.com/articles/s41563-019-0327-
Coupling of magnetic order and charge transport in the candidate Dirac semimetal EuCdAs
We use resonant elastic x-ray scattering to determine the evolution of
magnetic order in EuCdAs below \,K, as a function of
temperature and applied magnetic field. We find an A-type
antiferromagneticstructure with in-plane magnetic moments, and observe dramatic
magnetoresistive effects associated with field-induced changes in the magnetic
structure and domain populations. Our \textit{ab initio} electronic structure
calculations indicate that the Dirac dispersion found in the nonmagnetic Dirac
semimetal CdAs is also present in EuCdAs, but is gapped for due to the breaking of symmetry by the magnetic
structure.Comment: Supplemental information attached to preprin
Application of an original RT-PCRâELISA multiplex assay for MDR1 and MRP, along with p53 determination in node-positive breast cancer patients
The long-term prognostic value of tumoural MDR1 and MRP, along with p53 and other classical parameters, was analysed on 85 node-positive breast cancer patients receiving anthracycline-based adjuvant therapy. All patients underwent tumour resection plus irradiation and adjuvant chemotherapy (the majority receiving fluorouracilâepirubicinâcyclophosphamide). Median follow-up for the 54 alive patients was 7.8 years. Mean age was 53.7 years (range 28â79) and 54 patients were post-menopausal. MDR1 and MRP expression were quantified according to an original reverse transcription polymerase chain reaction multiplex assay with colourimetric enzyme-linked immunosorbent assay detection(ÎČ2-microglobulin as control). P53 protein was analysed using an immunoluminometric assay (Sangtec). MDR1 expression varied within an 11-fold range (mean 94, median 83), MRP within a 45-fold range (mean 315, median 242) and p53 protein from the limit of detection (0.002 ng mgâ1) up to 35.71 ng mgâ1(mean 1.18, median 0.13 ng mgâ1). P53 protein was significantly higher in oestrogen receptor (ER)-negative than in ER-positive tumours (P = 0.039). The higher the p53, the lower the MDR1 expression (P = 0.015, r = â0.27). P53 was not linked to progesterone receptor (PR) status, S phase fraction, or MRP. Significantly greater MDR1 expression was observed in grade I tumours (P = 0.029). No relationship was observed between MDR1 and MRP. Neither MDR1 nor MRP was linked to ER or PR status. Unlike MDR1, MRP was correlated with the S phase: the greater the MRP, the lower the S phase (P = 0.006, r = â0.42). Univariate Cox analyses revealed that MDR1, MRP, p53 and S phase had no significant influence on progression-free or specific survival. A tendency suggested that the greater the p53, the shorter the progression-free survival (P = 0.076 as continuous and 0.069 as dichotomous). © 2000 Cancer Research Campaig
Hidden Charge Order in an Iron Oxide Square-Lattice Compound
Since the discovery of charge disproportionation in the FeO2 square-lattice compound Sr3Fe2O7 by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained âhiddenâ to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO2 planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on âhidden orderâ in other materials
- âŠ