3 research outputs found

    Microplastic Detection in Soil Amended With Municipal Solid Waste Composts as Revealed by Transmission Electronic Microscopy and Pyrolysis/GC/MS

    Get PDF
    Urban compost application in agroecosystems enhances soil fertility but can also be a source of (micro) plastics, which are not completely removed during the composting process. Knowledge of the fate of these plastics in regularly-amended soils is thus an issue for the environmental management of these soils. The aims of this study were (1) to develop a method combining soil fractionation, microscopic observation and chemical characterization to follow the fate of plastics in soils and (2) to apply this method on a long-term experimental field, where municipal solid waste composts were applied every other year during 10 years. The presence of plastics was investigated within compost and soil fractions using morphological and analytical characterization by transmission electronic microscopy (TEM-EDX) and pyrolysis coupled to gas chromatography and mass spectrometry (Py/GC/MS). Specific features of plastics allowed us to distinguish these polymers from soil organic matter even in the <200 μm soil fractions. Ti and Ba detection associated with these features, as they are initially added during the polymer production, also constituted plastic tracers within organo-mineral fractions. Plastic fragments as detected by TEM were less abundant in the fine soil fractions compared to the coarsest ones. The abundance of styrene produced upon pyrolysis, used as a molecular tracer of plastics, also decreased relative to produced toluene according to the same particle size gradient. Our results evidenced that plastics and microplastics were present in the soil that was amended for 10 years with compost, while not in the control soil. MPs were mostly observed as individualized particles, present in the coarsest fractions as well as some of the fine soil fractions, but they were little associated with the soil matrix. They mostly did not show any degradation features such as microbial lysis. We thus suggest that their evolution in soil was mainly due to fragmentation. Our methodological approach provides tools to monitor the fate of microplastics over time and specify the contribution of such contaminants in soil amended with bio-based products

    Earthworm Cast Formation and Development: A Shift From Plant Litter to Mineral Associated Organic Matter

    Get PDF
    Earthworms play a major role in litter decomposition, in processing soil organic matter and driving soil structure formation. Earthworm casts represent hot spots for carbon turnover and formation of biogeochemical interfaces in soils. Due to the complex microscale architecture of casts, understanding the mechanisms of cast formation and development at a process relevant scale, i.e., within microaggregates and at the interface between plant residues, microorganisms and mineral particles, remains challenging. We used stable isotope enrichment to trace the fate of shoot and root litter in intact earthworm cast samples. Surface casts produced by epi-anecic earthworms (Lumbricus terrestris) were collected after 8 and 54 weeks of soil incubation in mesocosms, in the presence of 13C-labeled Ryegrass shoot or root litter deposited onto the soil surface. To study the alteration in the chemical composition from initial litter to particulate organic matter (POM) and mineral-associated organic matter (MOM) in cast samples, we used solid-state 13C Nuclear Magnetic Resonance spectroscopy (13C-CPMAS-NMR) and isotopic ratio mass spectrometry (EA-IRMS). We used spectromicroscopic approach to identify plant tissues and microorganisms involved in plant decomposition within casts. A combination of transmission electron microscopy (TEM) and nano-scale secondary ion mass spectrometry (NanoSIMS) was used to obtain the distribution of organic carbon and δ13C within intact cast sample structures. We clearly demonstrate a different fate of shoot- and root-derived organic carbon in earthworm casts, with a higher abundance of less degraded root residues recovered as particulate organic matter on the short-term (8 weeks) (73 mg·g−1 in Cast-Root vs. 44 mg·g−1 in Cast-Shoot). At the early stages of litter decomposition, the chemical composition of the initial litter was the main factor controlling the composition and distribution of soil organic matter within casts. At later stages, we can demonstrate a clear reduction of structural and chemical differences in root and shoot-derived organic products. After 1 year, MOM clearly dominated the casts (more than 85% of the total OC in the MOM fraction). We were able to highlight the shift from a system dominated by free plant residues to a system dominated by MOM during cast formation and development

    Production de siderophores dans des sols acides et calcimagnesiques et alteration de mineraux (oxyhydroxydes, silicates) par des champignons ectomycorhiziens

    No full text
    SIGLEINIST T 74160 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore