36 research outputs found

    Microsatellite Typing of Clinical and Environmental Cryptococcus neoformans var. grubii Isolates from Cuba Shows Multiple Genetic Lineages

    Get PDF
    Background: Human cryptococcal infections have been associated with bird droppings as a likely source of infection. Studies toward the local and global epidemiology of Cryptococcus spp. have been hampered by the lack of rapid, discriminatory, and exchangeable molecular typing methods. Methodology/Principal Findings: We selected nine microsatellite markers for high-resolution fingerprinting from the genome of C. neoformans var. grubii. This panel of markers was applied to a collection of clinical (n = 122) and environmental (n = 68; from pigeon guano) C. neoformans var. grubii isolates from Cuba. All markers proved to be polymorphic. The average number of alleles per marker was 9 (range 5-51). A total of 104 genotypes could be distinguished. The discriminatory power of this panel of markers was 0.993. Multiple clusters of related genotypes could be discriminated that differed in only one or two microsatellite markers. These clusters were assigned as microsatellite complexes. The majority of environmental isolates (> 70%) fell into 1 microsatellite complex containing only few clinical isolates (49 environmental versus 2 clinical). Clinical isolates were segregated over multiple microsatellite complexes. Conclusions/Significance: A large genotypic variation exists in C. neoformans var. grubii. The genotypic segregation between clinical and environmental isolates from pigeon guano suggests additional source(s) of human cryptococcal infections. The selected panel of microsatellite markers is an excellent tool to study the epidemiology of C. neoformans var. grubii

    Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C. gattii

    Get PDF
    We thank the Broad Institute Sequencing Platform for generating the Illumina sequences. We thank Chen-Hsin Yu for helping on the data processing of the phenotypic tests. We acknowledge the South African National Institute for Communicable Diseases’ GERMS-SA surveillance network through which these isolates were originally collected. This project has been funded in whole or in part by the following U.S. Health and Human Services grants from the National Institute of Allergy and Infectious Diseases: U19 AI110818 (Broad Institute), R01 AI93257 (J.R.P.), R01 AI73896 (J.R.P.), and R01 AI025783 (T.G.M.). R.A.F. was supported by the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely our responsibility and does not necessarily represent the official views of the funders. The use of product names in this manuscript does not imply their endorsement by the U.S. Department of Health and Human Services. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the CDC.Peer reviewedPublisher PD

    Surface Localization of Glucosylceramide during Cryptococcus neoformans Infection Allows Targeting as a Potential Antifungal

    Get PDF
    Cryptococcus neoformans (Cn) is a significant human pathogen that, despite current treatments, continues to have a high morbidity rate especially in sub-Saharan Africa. The need for more tolerable and specific therapies has been clearly shown. In the search for novel drug targets, the gene for glucosylceramide synthase (GCS1) was deleted in Cn, resulting in a strain (Δgcs1) that does not produce glucosylceramide (GlcCer) and is avirulent in mouse models of infection. To understand the biology behind the connection between virulence and GlcCer, the production and localization of GlcCer must be characterized in conditions that are prohibitive to the growth of Δgcs1 (neutral pH and high CO2). These prohibitive conditions are physiologically similar to those found in the extracellular spaces of the lung during infection. Here, using immunofluorescence, we have shown that GlcCer localization to the cell surface is significantly increased during growth in these conditions and during infection. We further seek to exploit this localization by treatment with Cerezyme (Cz), a recombinant enzyme that metabolizes GlcCer, as a potential treatment for Cn. Cz treatment was found to reduce the amount of GlcCer in vitro, in cultures, and in Cn cells inhabiting the mouse lung. Treatment with Cz induced a membrane integrity defect in wild type Cn cells similar to Δgcs1. Cz treatment also reduced the in vitro growth of Cn in a dose and condition dependent manner. Finally, Cz treatment was shown to have a protective effect on survival in mice infected with Cn. Taken together, these studies have established the legitimacy of targeting the GlcCer and other related sphingolipid systems in the development of novel therapeutics

    Protection by Anti-β-Glucan Antibodies Is Associated with Restricted β-1,3 Glucan Binding Specificity and Inhibition of Fungal Growth and Adherence

    Get PDF
    Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model

    Cryptococcal meningitis: A neglected NTD?

    Get PDF
    Although HIV/AIDS has been anything but neglected over the last decade, opportunistic infections (OIs) are increasingly overlooked as large scale donors shift their focus from acute care to prevention and earlier antiretroviral treatment (ART) initiation. Of these OIs, cryptococcal meningitis, a deadly invasive fungal infection, continues to affect hundreds of thousands of HIV patients with advanced disease each year and is responsible for an estimated 15%-20% of all AIDS-related deaths [1,2]. Yet cryptococcal meningitis ranks amongst the most poorly funded “neglected” diseases in the world, receiving 0.2% of available relevant research and development (RandD) funding according to Policy Cures’ 2016 G-Finder Report [3,4]

    Managing cryptococcosis in the immunocompromised host.

    No full text
    PURPOSE OF REVIEW: Expanding access to antiretroviral treatment has dramatically improved the long-term prognosis of patients with HIV-associated cryptococcal disease who survive the acute infection. However, the incidence and acute mortality of HIV-associated cryptococcal meningitis remain high. In this context, this review summarizes urgently needed recent work aimed at improving the acute management of cryptococcal infection in immunocompromised hosts. RECENT FINDINGS: Studies have started to optimize antifungal regimens and address the complications of raised cerebrospinal fluid pressure and cryptococcal immune reconstitution syndrome. Amphotericin B at 1 mg/kg per day has been shown to be more rapidly fungicidal than the standard dose of 0.7 mg/kg per day, and new data support the importance of combination therapy with flucytosine. Amphotericin B and fluconazole at 800 mg is an alternative combination that appears superior to amphotericin B alone. At a dosage of 400 mg per day, fluconazole alone is much less rapidly fungicidal than amphotericin B and is associated with the development of secondary resistance. SUMMARY: Recent findings support the use of rapidly fungicidal initial antifungal therapy with amphotericin B-based combination treatment. Where amphotericin B treatment is not yet feasible, studies are needed to optimize oral regimens. Based on accumulating data on rate of clearance of infection, the most promising new regimens in terms of fungicidal activity and safety could be selected for clinical endpoint trials
    corecore