78 research outputs found

    Sesame Project - Deliverable D08-02 - WP02 H/V technique : experimental conditions - Final report on Measurement Guidelines

    Get PDF
    In the following we report the final results for WP02-Measurement Guidelines. This work was conducted under the framework of the SESAME Project (Site Effects Assessment Using Ambient Excitations, EC-RGD, Project No. EVG1-CT-2000-00026 SESAME), Task A (H/V technique), Work Package 02 (WP02 – Measurement Guidelines).European Commission – Research General Directorate Project No. EVG1-CT-2000-00026 SESAMEPublished4.1. Metodologie sismologiche per l'ingegneria sismicaope

    State Fragility, Rent Seeking and Lobbying: Evidence from African Data

    Full text link
    This paper assesses the determinants of state fragility in sub-Saharan Africa using hitherto unexplored variables in the literature. The previously missing dimension of nation building is integrated and the hypothesis of state fragility being a function of rent seeking and/or lobbying by de facto power holders is tested. The resulting interesting finding is that, political interference, rent seeking and lobbying increase the probability of state fragility by mitigating the effectiveness of governance capacity. This relationship (after controlling for a range of economic, institutional and demographic factors) is consistent with a plethora of models and specifications. The validity of the hypothesis is confirmed in a scenario of extreme state fragility. Moreover, the interaction between political interferences and revolutions mitigate the probability of state fragility while the interaction between natural resources and political interferences breeds the probability of extreme state fragility. As a policy implication, there is a 'sub-Saharan African specificity' in 'nation building' and prevention of conflicts. Blanket fragility oriented policies will be misplaced unless they are contingent on the degree of fragility, since 'fragile' and 'extreme fragile' countries respond differently to economic, institutional and demographic characteristics of state fragility

    Implication of Tissue Factor Bearing Microvesicles in Hypercoagulable State in Acute Promyelocytic Leukemia

    No full text
    4788 Introduction Thrombosis is a common complication of patients with malignancies. Patients with hematological malignancy have a 28 fold increase risk to develop venous thromboembolism (VTE). A population-based cohort was used to determine the incidence and risk factors associated with development of venous thromboembolism (VTE) among Californians diagnosed with acute leukemia between 1993 to 1999. Principal outcomes were deep vein thrombosis in the lower and upper extremities, pulmonary embolism, and mortality. Among 5,394 cases with acute myelogenous leukemia (AML), the 2-year cumulative incidence of VTE was 281 (5.2%). Sixty-four% of the VTE events occurred within 3 months of AML diagnosis. The induction of hypercoagulable state mechanisms is not fully understood to date. Multifactorial aspects such as physic immobility, chemotherapy adverse effects or the overexpression of several procoagulant substances (cytokines, cysteine protease and tissue factor) by cancer cells are often provoked. Several studies strongly suggest that microvesicles (MVs) harboring tissue factor activity may have a primary role in VTE. MVs are small membrane vesicles shed from normal and/or tumor cells following activation or apoptosis. MVs may present TF and negatively charged phospholipids (PL) such as phosphatidylserine on their membrane. These elements are thought to be implicated in the procoagulant activity (PCA). Objectives The aim of this study was to assess the capacity of untreated acute promyelocytic leukemia cells to shed procoagulant MVs. Methods Acute promyelocytic leukemia (APL) cells lines (NB4 and HL-60) were cultured 48h in medium at 600,000 cells/mL. Cells and MVs were separated by filtrations (0.1–0.22–0.45–0.65μm). The PCA was assessed by thrombin generation assay. Alternatively, MVs were incubated with anti-TF antibodies (10μg/mL) or with annexin V (0,5μM to assess the contribution of TF and phospholipids to the PCA. Moreover HL-60 cells were incubated with HgCl2 which promote di-S bond formation (activation of TF). Results NB4 cells and HL-60 cells can stimulate thrombin generation. HL60 cells reduced the lagtime 3.9-fold and increased the peak 1.6-fold in comparison to CTL and NB4 cells decreased the lagtime 10.9-fold and increased the peak 6.7-fold in comparison to CTL. No PCA was observed in HL-60 filtered with 0.65 μm membrane (no statistical difference in lagtime peak and ETP). By contrast, NB4 cells can support thrombin generation activity when filtered at different sizes. MVs of sizes <0.65 and <0.45 μm decreased the lagtime 4.2- and 3.8-fold, respectively and increased the peak of thrombin 4.6- and 4.1-fold, respectively. MVs of sizes lower than 0.22 and <0.1 μm reduced the lagtime 2.4- and 1.6-fold, respectively and increased the peak 2.3- and 1.4-fold, respectively. Thrombin generation activity of MVs of size <0.65 μm derived from NB4 cells wass abolished when anti-TF antibodies or annexin V were preincubated Discussion NB4 cells and HL-60 cells have different PCA. NB4 cells have a higher procoagulant activity and most of the PCA is linked to MVs of size under 0.45 μm. NB4 cells spontaneously release different sized MVs which can support thrombin generation. By using an anti-TF function-blocking antibody (HTF-1) and annexin V which binds phosphatidylserine, we confirmed that the PCA of MVs is related to the expression of active TF and PL. HL-60 cells have a weaker procoagulant activity because TF is mostly present in an inactive form (activation of TF by reduction agent such as HgCl2 increased the PCA of HL-60 cells of +/− 35%). Moreover HL-60 cells do not produce MVs<0.65 μm associated with PCA. Conclusions APL NB4 cells and HL-60 cells can stimulate thrombin generation. NB4 cells release MVs (of size <0.65 μm) whose procoagulant activity is mediated by TF and PL. These MVs could have a prognostic value for VTE in patient with APL. Disclosures No relevant conflicts of interest to declare

    Influence of Cutting Temperature on the Tensile Strength of a Carbon Fiber-Reinforced Polymer

    Get PDF
    Carbon fiber-reinforced plastics (CFRP) have seen a significant increase in use over the years thanks to their specific properties. Despite continuous improvements in the production methods of laminated parts, a trimming operation is still necessary to achieve the functional dimensions required by engineering specifications. Laminates made of carbon fibers are very abrasive and cause rapid tool wear, and require high cutting temperatures. This creates damage to the epoxy matrix, whose glass-transition temperature is often recognized to be about 180 °C. This study aims to highlight the influence of the cutting temperature generated by tool wear on the surface finish and mechanical properties obtained from tensile tests. Trimming operations were performed on a quasi-isotropic 24-ply carbon/epoxy laminate, of 3.6 mm thickness, with a 6 flutes diamond-coated (CVD) cutter. The test specimens of 6 mm and 12 mm wide were obtained by trimming. The reduced width of the coupons allowed amplification of the effect of defects on the measured properties by increasing the proportion of coupon cross-section occupied by the defects. A new tool and a tool in an advanced state of wear were used to generate different cutting temperatures. Results showed a cutting temperature of 300 °C for the new tool and 475 °C for the worn tool. The analysis revealed that the specimens machined with the new tool have no thermal damage and the cut is clean. The plies oriented at −45° presented the worst surface finish according to the failure mode of the fiber. For the worn tool, the surface was degraded and the matrix was carbonized. After cutting, observations showed a degraded resin spread on the machined surface, which reduced the surface roughness and hid the cutting defects. In support of these observations, the tensile tests showed no variation of the mechanical properties for the 12 mm-wide specimens, but did show a 10% loss in mechanical properties for the 6 mm-wide specimens. These results suggest that the thermal defects caused by tool wear affect tensile properties, but only from a certain coupon width below which the machining defects increase their influence on the properties

    Device for dispensing microfluidic droplets, particularly for cytometry

    No full text
    The invention relates to a device for dispensing droplets comprising a first channel (8, 10), known as the main channel, for circulating a first liquid flow, a second channel (12, 13) for circulating fluid, forming an intersection area (27) with the first channel and being terminated by an ejection opening (20), means (4) for measuring a physical property of particles or cells in the first channel (18), and means for producing a pressure wave in the second channel (12,13)

    Tool Condition Monitoring Using Machine Tool Spindle Electric Current and Multiscale Analysis while Milling Steel Alloy

    No full text
    In the metal cutting process, the tool condition directly affects the quality of the machined component. To control the quality of the cutting tool and avoid equipment downtime, it is essential to monitor its condition during the machining process. The primary purpose is to send a warning before tool wear reaches a certain level, which could influence product quality. In this paper, tool condition is monitored using fractal analysis of the spindle electric current signal. The current study analyzes the monitoring of the cutting tool when milling AISI 5140 steel with a four-flute solid carbide end mill cutter to develop monitoring techniques for wear classification of metal cutting processes. The spindle electric current signal is acquired using the machine tool internal sensor, which meets industrial constraints in their operating conditions. As a new approach, the fractal theory is referred to analyze the spindle electric current signal and then assess the tool wear condition during the metal cutting process. Fractal parameters were defined to extract significant characteristic features of the signal. This research provides a proof of concept for the use of fractal analysis as a decision-making strategy in monitoring tool condition
    • …
    corecore