17,765 research outputs found
On Dimer Models and Closed String Theories
We study some aspects of the recently discovered connection between dimer
models and D-brane gauge theories. We argue that dimer models are also
naturally related to closed string theories on non compact orbifolds of \BC^2
and \BC^3, via their twisted sector R charges, and show that perfect
matchings in dimer models correspond to twisted sector states in the closed
string theory. We also use this formalism to study the combinatorics of some
unstable orbifolds of \BC^2.Comment: 1 + 25 pages, LaTeX, 11 epsf figure
Squeezing out predictions with leptogenesis from SO(10)
We consider the see-saw mechanism within a non-supersymmetric SO(10) model.
By assuming the SO(10) quark-lepton symmetry, and after imposing suitable
conditions that ensure that the right-handed (RH) neutrino masses are at most
mildly hierarchical (compact RH spectrum) we obtain a surprisingly predictive
scenario. The absolute neutrino mass scale, the Dirac and the two Majorana
phases of the neutrino mixing matrix remain determined in terms of the set of
already measured low energy observables, modulo a discrete ambiguity in the
signs of two neutrino mixing angles and of the Dirac phase. The RH neutrinos
mass spectrum is also predicted, as well as the size and sign of the
leptogenesis CP asymmetries. We compute the cosmological baryon asymmetry
generated through leptogenesis and obtain the correct sign and a size
compatible with observations.Comment: 18 pages, 2 figures; minor changes, version accepted for publication
in PR
AFM pulling and the folding of donor-acceptor oligorotaxanes: phenomenology and interpretation
The thermodynamic driving force in the self-assembly of the secondary
structure of a class of donor-acceptor oligorotaxanes is elucidated by means of
molecular dynamics simulations of equilibrium isometric single-molecule force
spectroscopy AFM experiments. The oligorotaxanes consist of
cyclobis(paraquat-\emph{p}-phenylene) rings threaded onto an oligomer of
1,5-dioxynaphthalenes linked by polyethers. The simulations are performed in a
high dielectric medium using MM3 as the force field. The resulting force vs.
extension isotherms show a mechanically unstable region in which the molecule
unfolds and, for selected extensions, blinks in the force measurements between
a high-force and a low-force regime. From the force vs. extension data the
molecular potential of mean force is reconstructed using the weighted histogram
analysis method and decomposed into energetic and entropic contributions. The
simulations indicate that the folding of the oligorotaxanes is energetically
favored but entropically penalized, with the energetic contributions overcoming
the entropy penalty and effectively driving the self-assembly. In addition, an
analogy between the single-molecule folding/unfolding events driven by the AFM
tip and the thermodynamic theory of first-order phase transitions is discussed
and general conditions, on the molecule and the cantilever, for the emergence
of mechanical instabilities and blinks in the force measurements in equilibrium
isometric pulling experiments are presented. In particular, it is shown that
the mechanical stability properties observed during the extension are
intimately related to the fluctuations in the force measurements.Comment: 42 pages, 17 figures, accepted to the Journal of Chemical Physic
Dynamics of correlations due to a phase noisy laser
We analyze the dynamics of various kinds of correlations present between two
initially entangled independent qubits, each one subject to a local phase noisy
laser. We give explicit expressions of the relevant quantifiers of correlations
for the general case of single-qubit unital evolution, which includes the case
of a phase noisy laser. Although the light field is treated as classical, we
find that this model can describe revivals of quantum correlations. Two
different dynamical regimes of decay of correlations occur, a Markovian one
(exponential decay) and a non-Markovian one (oscillatory decay with revivals)
depending on the values of system parameters. In particular, in the
non-Markovian regime, quantum correlations quantified by quantum discord show
an oscillatory decay faster than that of classical correlations. Moreover,
there are time regions where nonzero discord is present while entanglement is
zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta,
special issue for CEWQO 2011 proceeding
Comparison of Howland and General Impedance Converter (GIC) circuit based current sources for bio-impedance measurements
The current source is a key component in bio-impedance measurement systems. The accuracy of the current source can be measured in terms of its output impedance together with other parameters, with certain applications demanding extremely high output impedance. This paper presents an investigation and comparison of different current source designs based on the Enhanced Howland circuit combined with a General Impedance Converter (GIC) circuit using both ideal and non-ideal operational amplifiers. Under differing load conditions two different settings of the GIC are evaluated and the results are compared to show its performance settings. Whilst the study has shown that over a wide bandwidth (i.e. 100Hz-100MHz) the output impedance is limited, operation over a more limited range offers output impedance in the Giga-ohm range, which can be considered as being infinite
A Note on Dimer Models and D-brane Gauge Theories
The connection between quiver gauge theories and dimer models has been well
studied. It is known that the matter fields of the quiver gauge theories can be
represented using the perfect matchings of the corresponding dimer model.We
conjecture that a subset of perfect matchings associated with an internal point
in the toric diagram is sufficient to give information about the charge matrix
of the quiver gauge theory. Further, we perform explicit computations on some
aspects of partial resolutions of toric singularities using dimer models. We
analyse these with graph theory techniques, using the perfect matchings of
orbifolds of the form \BC^3/\Gamma, where the orbifolding group may
be noncyclic. Using these, we study the construction of the superpotential of
gauge theories living on D-branes which probe these singularities, including
the case where one or more adjoint fields are present upon partial resolution.
Applying a combination of open and closed string techniques to dimer models, we
also study some aspects of their symmetries.Comment: Discussions expanded, clarifications added, typos fixed. 1+49 page
Entanglement dynamics of two independent qubits in environments with and without memory
A procedure to obtain the dynamics of independent qudits (-level
systems) each interacting with its own reservoir, for any arbitrary initial
state, is presented. This is then applied to study the dynamics of the
entanglement of two qubits, initially in an extended Werner-like mixed state
with each of them in a zero temperature non-Markovian environment. The
dependence of the entanglement dynamics on the purity and degree of
entanglement of the initial states and on the amount of non-Markovianity is
also given. This extends the previous work about non-Markovian effects on the
two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo
\textit{et al.}, Phys. Rev. Lett. \textbf{99}, 160502 (2007)]. The effect of
temperature on the two-qubit entanglement dynamics in a Markovian environment
is finally obtained.Comment: 10 pages, 6 figure
Simulation of Light Antinucleus-Nucleus Interactions
Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and
anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some
cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To
support the experimental studies of the anti-nuclei a Monte Carlo simulation of
anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The
implementation combines practically all known theoretical approaches to the
problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure
On the Classification of Brane Tilings
We present a computationally efficient algorithm that can be used to generate
all possible brane tilings. Brane tilings represent the largest class of
superconformal theories with known AdS duals in 3+1 and also 2+1 dimensions and
have proved useful for describing the physics of both D3 branes and also M2
branes probing Calabi-Yau singularities. This algorithm has been implemented
and is used to generate all possible brane tilings with at most 6
superpotential terms, including consistent and inconsistent brane tilings. The
collection of inconsistent tilings found in this work form the most
comprehensive study of such objects to date.Comment: 33 pages, 12 figures, 15 table
- …