49,160 research outputs found

    The delayed contribution of low and intermediate mass stars to chemical galactic enrichment: An analytical approach

    Full text link
    We find a new analytical solution for the chemical evolution equations, taking into account the delayed contribution of all low and intermediate mass stars (LIMS) as one representative star that enriches the interstellar medium.This solution is built only for star formation rate proportional to the gas mass in a closed box model. We obtain increasing C/O and N/O ratios with increasing O/H, behavior impossible to match with the Instantaneous Recycling Approximation (IRA). Our results, obtained by two analytical equations, are very similar to those found by numerical models that consider the lifetimes of each star. This delayed model reproduces successfully the evolution of C/O-O/H and Y-O relations in the solar vicinity. This analytical approximation is a useful tool to study the chemical evolution of elements produced by LIMS when a galactic chemical evolutionary code is not available.Comment: 19 pages, 5 figures, to be published in the RevMexAA in October 200

    Scheme Independence of the Effective Hamiltonian for bsγb \rightarrow s \, \gamma and bsgb \rightarrow s \, g Decays

    Full text link
    We present a calculation of the effective weak Hamiltonian which governs bsγb \rightarrow s\, \gamma and bsgb \rightarrow s \, g transitions in two different renormalization schemes (NDR and HV). In the leading logarithmic approximation, we show that the coefficients of the effective Hamiltonian are scheme independent only when one takes correctly into account the scheme dependence of one- and two- loop diagrams. We demonstrate that in NDR there are contributions which were missed in previous calculations. These contributions are necessary to obtain scheme independent coefficients in the final results.Comment: 16 pp + 5 figures not included (available by anonymous ftp at amisan.iss.infn.it (141.108.15.215), directory /ftp/bsgamma), LaTeX, LPTENS 93/28, ROME 93/958, ULB-TH 93/0

    Testing the Standard Model and searching for New Physics with BdππB_d \to \pi \pi and BsKKB_s \to K K decays

    Full text link
    We propose to perform a combined analysis of BππB \to \pi\pi and BsK+KB_s \to K^+ K^- modes, in the framework of a global CKM fit. The method optimizes the constraining power of these decays and allows to derive constraints on NP contributions to penguin amplitudes or on the BsB_s mixing phase. We illustrate these capabilities with a simplified analysis using the recent measurements by the LHCb Collaboration, neglecting correlations with other SM observables.Comment: 5 pages, 4 figures. v2: references and clarifications added, version published in JHE

    Coupling Josephson qubits via a current-biased information bus

    Full text link
    Josephson qubits without direct interaction can be effectively coupled by sequentially connecting them to an information bus: a current-biased large Josephson junction treated as an oscillator with adjustable frequency. The coupling between any qubit and the bus can be controlled by modulating the magnetic flux applied to that qubit. This tunable and selective coupling provides two-qubit entangled states for implementing elementary quantum logic operations, and for experimentally testing Bell's inequality.Comment: 10 pages, 1 figure. submitte

    Optical nonclassicality test based on third-order intensity correlations

    Get PDF
    We develop a nonclassicality criterion for the interference of three delayed, but otherwise identical, light fields in a three-mode Bell interferometer. We do so by comparing the prediction of quantum mechanics with those of a classical framework in which independent sources emit electric fields with random phases. In particular, we evaluate third-order correlations among output intensities as a function of the delays, and show how the presence of a correlation revival for small delays cannot be explained by the classical model of light. The observation of a revival is thus a nonclassicality signature, which can be achieved only by sources with a photon-number statistics that is highly sub-Poissonian. Our analysis provides strong evidence for the nonclassicality of the experiment discussed in [Menssen et al., PRL, 118, 153603 (2017)], and shows how a collective "triad" phase affects the interference of any three or more light fields, irrespective of their quantum or classical character
    corecore