895 research outputs found

    Comfort from the perspective of families of people hospitalized in the intensive care unit

    Get PDF
    This study aimed at understanding the meaning of comfort to the families of people in intensive care units. It consists of a qualitative study carried out in the intensive care unit of a hospital in Salvador-Bahia. Fourteen family members were interviewed. The authors utilized the theoretical principles of symbolic interactionism and the technique of qualitative data analysis. Results indicated that the categories Safety, Receptiveness, Information, Proximity, Social and Spiritual Support, Convenience and Integration expressed the meaning of comfort, which was comprised of reliability in terms of technical-scientific competence and a supportive and sensitive attitude of the team, chance of recovery, access to information and the opportunity to be close to the patient, support of people in their social life, spiritual sources and the environmental structure of the hospital, preservation of self-care and routine activities. It was concluded that the family is important as objects and subjects of the actions in healthcare and must be the focus in public health policies and programs in Brazil

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Genetic Characterization of a Core Set of a Tropical Maize Race Tuxpeño for Further Use in Maize Improvement

    Get PDF
    The tropical maize race Tuxpeño is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP) markers. This panel included 321 core accessions of Tuxpeño race from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank collection, 94 CIMMYT maize lines (CMLs) and 54 U.S. Germplasm Enhancement of Maize (GEM) lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants). Clustering analyses (CA) based on Modified Rogers Distance (MRD) clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the Tuxpeño core set. Various breeding strategies for using the Tuxpeño core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the Tuxpeño core, a minicore subset of 64 Tuxpeño accessions (20% of its usual size) representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the Tuxpeño landrace for maize improvement through the core and/or minicore subset available to the maize community

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Medical countermeasures for national security: a new government role in the pharmaceuticalization of society

    Get PDF
    How do governments contribute to the pharmaceuticalization of society? Whilst the pivotal role of industry is extensively documented, this article shows that governments too are accelerating, intensifying and opening up new trajectories of pharmaceuticalization in society. Governments are becoming more deeply invested in pharmaceuticals because their national security strategies now aspire to defend populations against health-based threats like bioterrorism and pandemics. To counter those threats, governments are acquiring and stockpiling a panoply of ‘medical countermeasures’ such as antivirals, next-generation vaccines, antibiotics and anti-toxins. More than that, governments are actively incentivizing the development of many new medical countermeasures – principally by marshaling the state's unique powers to introduce exceptional measures in the name of protecting national security. At least five extraordinary policy interventions have been introduced by governments with the aim of stimulating the commercial development of novel medical countermeasures: (1) allocating earmarked public funds, (2) granting comprehensive legal protections to pharmaceutical companies against injury compensation claims, (3) introducing bespoke pathways for regulatory approval, (4) instantiating extraordinary emergency use procedures allowing for the use of unapproved medicines, and (5) designing innovative logistical distribution systems for mass drug administration outside of clinical settings. Those combined efforts, the article argues, are spawning a new, government-led and quite exceptional medical countermeasure regime operating beyond the conventional boundaries of pharmaceutical development and regulation. In the first comprehensive analysis of the pharmaceuticalization dynamics at play in national security policy, this article unearths the detailed array of policy interventions through which governments too are becoming more deeply imbricated in the pharmaceuticalization of society
    corecore