25,930 research outputs found
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
On the heating of source of the Orion KL hot core
We present images of the J=10-9 rotational lines of HC3N in the vibrationally
excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images
show that the spatial distribution and the size emission from the 1v7 and 1v5
levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and
peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is
unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear
indication that the HC is composed of condensations with very different
temperatures (170 K for the 1v7 peak and K for the 1v5 peak). The
temperature derived from the 1v7 and 1v5 lines increases with the projected
distance to the suspected main heating source I. Projection effects along the
line of sight could explain the temperature gradient as produced by source I.
However, the large luminosity required for source I, >5 10^5 Lsolar, to explain
the 1v5 line suggests that external heating by this source may not dominate the
heating of the HC. Simple model calculations of the vibrationally excited
emission indicate that the HC can be internally heated by a source with a
luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south
of source I). We also report the first detection of high-velocity gas from
vibrationally excited HC3N emission. Based on excitation arguments we conclude
that the main heating source is also driving the molecular outflow. We
speculate that all the data presented in this letter and the IR images are
consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter
Revival of quantum correlations without system-environment back-action
Revivals of quantum correlations have often been explained in terms of
back-action on quantum systems by their quantum environment(s). Here we
consider a system of two independently evolving qubits, each locally
interacting with a classical random external field. The environments of the
qubits are also independent, and there is no back-action on the qubits.
Nevertheless, entanglement, quantum discord and classical correlations between
the two qubits may revive in this model. We explain the revivals in terms of
correlations in a classical-quantum state of the environments and the qubits.
Although classical states cannot store entanglement on their own, they can play
a role in storing and reviving entanglement. It is important to know how the
absence of back-action, or modelling an environment as classical, affects the
kind of system time evolutions one is able to describe. We find a class of
global time evolutions where back-action is absent and for which there is no
loss of generality in modelling the environment as classical. Finally, we show
that the revivals can be connected with the increase of a parameter used to
quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
On Dimer Models and Closed String Theories
We study some aspects of the recently discovered connection between dimer
models and D-brane gauge theories. We argue that dimer models are also
naturally related to closed string theories on non compact orbifolds of \BC^2
and \BC^3, via their twisted sector R charges, and show that perfect
matchings in dimer models correspond to twisted sector states in the closed
string theory. We also use this formalism to study the combinatorics of some
unstable orbifolds of \BC^2.Comment: 1 + 25 pages, LaTeX, 11 epsf figure
Quantum two-level systems in Josephson junctions as naturally formed qubits
The two-level systems (TLSs) naturally occurring in Josephson junctions
constitute a major obstacle for the operation of superconducting phase qubits.
Since these TLSs can possess remarkably long decoherence times, we show that
such TLSs can themselves be used as qubits, allowing for a well controlled
initialization, universal sets of quantum gates, and readout. Thus, a single
current-biased Josephson junction (CBJJ) can be considered as a multiqubit
register. It can be coupled to other CBJJs to allow the application of quantum
gates to an arbitrary pair of qubits in the system. Our results indicate an
alternative way to realize superconducting quantum information processing.Comment: Reference adde
Quantum information processing using frequency control of impurity spins in diamond
Spin degrees of freedom of charged nitrogen-vacancy (NV) centers in
diamond have large decoherence times even at room temperature, can be
initialized and read out using optical fields, and are therefore a promising
candidate for solid state qubits. Recently, quantum manipulations of NV-
centers using RF fields were experimentally realized. In this paper we show;
first, that such operations can be controlled by varying the frequency of the
signal, instead of its amplitude, and NV- centers can be selectively
addressed even with spacially uniform RF signals; second, that when several \NV
- centers are placed in an off-resonance optical cavity, a similar application
of classical optical fields provides a controlled coupling and enables a
universal two-qubit gate (CPHASE). RF and optical control together promise a
scalable quantum computing architecture
A New Derivation of the CPT and Spin-Statistics Theorems in Non-Commutative Field Theories
We propose an alternative axiomatic description for non-commutative field
theories (NCFT) based on some ideas by Soloviev to nonlocal quantum fields. The
local commutativity axiom is replaced by the weaker condition that the fields
commute at sufficiently large spatial separations, called asymptotic
commutativity, formulated in terms of the theory of analytic functionals. The
question of a possible violation of the CPT and Spin-Statistics theorems caused
by nonlocality of the commutation relations
is investigated. In spite of this
inherent nonlocality, we show that the modification aforementioned is
sufficient to ensure the validity of these theorems for NCFT. We restrict
ourselves to the simplest model of a scalar field in the case of only
space-space non-commutativity.Comment: The title is new, and the analysis in the manuscript has been made
more precise. This revised version is to be published in J.Math.Phy
- âŠ