180 research outputs found
A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number
This contribution provides a general framework to use Lagrange multipliers
for the simulation of low Reynolds number fiber dynamics based on Bead Models
(BM). This formalism provides an efficient method to account for kinematic
constraints. We illustrate, with several examples, to which extent the proposed
formulation offers a flexible and versatile framework for the quantitative
modeling of flexible fibers deformation and rotation in shear flow, the
dynamics of actuated filaments and the propulsion of active swimmers.
Furthermore, a new contact model called Gears Model is proposed and
successfully tested. It avoids the use of numerical artifices such as repulsive
forces between adjacent beads, a source of numerical difficulties in the
temporal integration of previous Bead Models.Comment: 41 pages, 15 figure
Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method
We present a new development of the force-coupling method (FCM) to address
the accurate simulation of a large number of interacting micro-swimmers. Our
approach is based on the squirmer model, which we adapt to the FCM framework,
resulting in a method that is suitable for simulating semi-dilute squirmer
suspensions. Other effects, such as steric interactions, are considered with
our model. We test our method by comparing the velocity field around a single
squirmer and the pairwise interactions between two squirmers with exact
solutions to the Stokes equations and results given by other numerical methods.
We also illustrate our method's ability to describe spheroidal swimmer shapes
and biologically-relevant time-dependent swimming gaits. We detail the
numerical algorithm used to compute the hydrodynamic coupling between a large
collection () of micro-swimmers. Using this methodology, we
investigate the emergence of polar order in a suspension of squirmers and show
that for large domains, both the steady-state polar order parameter and the
growth rate of instability are independent of system size. These results
demonstrate the effectiveness of our approach to achieve near continuum-level
results, allowing for better comparison with experimental measurements while
complementing and informing continuum models.Comment: 37 pages, 21 figure
Hydrodynamic interactions among large populations of swimming micro-organisms.
Bio-convection, biofilm forming or mechanics of reproduction are connected to the motility and collective behaviour of micro-organisms. For instance, spermatozoa suspensions exhibit coherent motion whose frequency and lifespan are strongly correlated to semen fertility (Moore et al. 2002). As interplays in many-bodied systems result in intricate patterns, the understanding of these requires an in-depth knowledge of the suspension microstructure and statistics. Representative and reliable statistics require a large number Np of interactive swimmers that many simulation methods can hardly afford [e.g. Np ¼ 40 in Mehandia and Nott (2008) or Np # 216 in Ishikawa et al. (2008)]. In the following, a spherical swimmer model is derived from the classical low Reynolds number framework and implemented in the force-coupling method (FCM) for large populations. Resulting statistics reveals non-trivial spatial arrangements of swimmers depending on their swimming gait
A general formulation of Bead Models applied to flexible fibers and active filaments at low Reynolds number
This contribution provides a general framework to use Lagrange multipliers for the simulation of low Reynolds number fiber dynamics based on Bead Models (BM). This formalism provides an efficient method to account for kinematic constraints. We illustrate, with several examples, to which extent the proposed formulation offers a flexible and versatile framework for the quantitative modeling of flexible fibers deformation and rotation in shear flow, the dynamics of actuated filaments and the propulsion of active swimmers. Furthermore, a new contact model called Gears Model is proposed and successfully tested. It avoids the use of numerical artifices such as repulsive forces between adjacent beads, a source of numerical difficulties in the temporal integration of previous Bead Models
Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method
We present a new development of the force-coupling method (FCM) to address the accurate simulation of a large number of interacting micro-swimmers. Our approach is based on the squirmer model, which we adapt to the FCM framework, resulting in a method that is suitable for simulating semi-dilute squirmer suspensions. Other effects, such as steric interactions, are considered with our model. We test our method by comparing the velocity field around a single squirmer and the pairwise interactions between two squirmers with exact solutions to the Stokes equations and results given by other numerical methods. We also illustrate our method’s ability to describe spheroidal swimmer shapes and biologically-relevant time-dependent swimming gaits. We detail the numerical algorithm used to compute the hydrodynamic coupling between a large collection (10^4–10^5) of micro-swimmers. Using this methodology, we investigate the emergence of polar order in a suspension of squirmers and show that for large domains, both the steady-state polar order parameter and the growth rate of instability are independent of system size. These results demonstrate the effectiveness of our approach to achieve near continuum-level results, allowing for better comparison with experimental measurements while complementing and informing continuum models
Identification of internal properties of fibres and micro-swimmers
In this paper, we address the identifiability of constitutive parameters of passive or active micro-swimmers. We first present a general framework for describing fibres or micro-swimmers using a bead-model description. Using a kinematic constraint formulation to describe fibres, flagellum or cilia, we find explicit linear relationship between elastic constitutive parameters and generalized velocities from computing contact forces. This linear formulation then permits one to address explicitly identifiability conditions and solve for parameter identification. We show that both active forcing and passive parameters are both identifiable independently but not simultaneously. We also provide unbiased estimators for generalized elastic parameters in the presence of Langevin-like forcing with Gaussian noise using a Bayesian approach. These theoretical results are illustrated in various configurations showing the efficiency of the proposed approach for direct parameter identification. The convergence of the proposed estimators is successfully tested numerically
X-ray-ultraviolet beam splitters for the Michelson interferometer
International audienceWith the aim of realizing a Michelson interferometer working at 13.9 nm, we have developed a symmetrical beam splitter with multilayers deposited on the front and back sides of a silicon nitride membrane. On the basis of the experimental optical properties of the membrane, simulations have been performed to define the multilayer structure that provides the highest reflectivity-transmission product. Optimized Mo-Si multilayers have been successfully deposited on both sides of the membrane by use of the ion-beam sputtering technique, with a thickness-period reproducibility of 0.1 nm. Measurements by means of synchrotron radiation at 13.9 nm and at an angle of 45° provide a reflectivity of 14.2% and a transmission of 15.2% for a 60% s-polarized light, close to the simulated values. Such a beam splitter has been used for x-ray laser Michelson interferometry at 13.9 nm. The first interferogram is discussed
Numerical modelling of long flexible fibers in homogeneous isotropic turbulence
We numerically investigated the transport, deformation and buckling events of an isolated elastic fiber in Taylor-Green vortices and studied the dynamics of long filaments in homogeneous isotropic turbulence. The fiber is modelled by an assembly of spherical beads. The contact between beads enforces the inextensibility of the filament while bending is accounted for by the Gears Bead Model (GBM) proposed by Delmotte et al. (2015). In the cellular Taylor-Green flow, the buckling probability is a function of a dimensionless number, called Sperm number, which is a balance between the compression rate of the flow and the elastic response of the filament. The shapes of the filament and its ability to buckle have been successfully validated through comparisons with experiments from the work by Quennouz et al. (2015). The deformation statistics of long flexible fibers in sustained homogeneous isotropic turbulence were analyzed for various flow and fiber material conditions. Two regimes have been identified depending on the ratio of fiber length to persistence length which is a measure of turbulent forcing to flexibility. The numerical results are in good agreement with existing experimental data (C. Brouzet et al., Phys. Rev. Lett. 112,
074501 (2014)) validating the assumptions of our model for the configurations we investigated
Polarization control of high order harmonics in the EUV photon energy range
International audienceWe report the generation of circularly polarized high order harmonics in the extreme ultraviolet range (18-27 nm) from a linearly polarized infrared laser (40 fs, 0.25 TW) focused into a neon filled gas cell. To circularly polarize the initially linearly polarized harmonics we have implemented a four-reflector phase-shifter. Fully circularly polarized radiation has been obtained with an efficiency of a few percents, thus being significantly more efficient than currently demonstrated direct generation of elliptically polarized harmonics. This demonstration opens up new experimental capabilities based on high order harmonics, for example, in biology and materials science. The inherent femtosecond time resolution of high order harmonic generating table top laser sources renders these an ideal tool for the investigation of ultrafast magnetization dynamics now that the magnetic circular dichroism at the absorption M-edges of transition metals can be exploite
- …