236 research outputs found

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Tyrosine Metabolism

    Get PDF
    Inherited disorders of tyrosine catabolism have been identified at five of the six enzymatic steps. Under normal conditions tyrosine concentrations are regulated by its synthetic enzyme (phenylalanine hydroxylase) and especially the first catabolic enzyme (tyrosine aminotransferase). Acquired or inherited deficiency of the second catabolic enzyme (4-hydroxyphenylpyruvate dioxygenase) also results in hypertyrosinemia. Tyrosine is mainly degraded in the liver but to a minor extent also in the kidney. In tyrosinemia type I, the primary defect is in the last enzyme of the pathway, accumulation of toxic metabolites are seen, and the hypertyrosinemia results from secondary deficiency of 4-hydroxyphenylpyruvate dioxygenase, which also is found in severe liver disease in general and in the immature liver. Generally, there is no common phenotype to the different disorders of tyrosine degradation. The occurrence of corneal and skin lesions, as seen in tyrosinemia type II, is a direct effect of high tissue tyrosine. Cognitive impairment is common in tyrosinemia type II, probably common in type III, and increasingly reported in type I. The liver and kidney diseases of tyrosinemia type I are caused by accumulation of toxic metabolites (fumarylacetoacetate and its derivatives) and can be prevented by an inhibitor (nitisinone) of tyrosine degradation at the level of 4-hydroxyphenylpyruvate dioxygenase. Whether maleylacetoacetate hydrolase that essentially gives the same metabolic features as tyrosinemia type I results in clinical features is unclear. In alkaptonuria there is no increase in tyrosine level, and the degradation of tyrosine proceeds at a normal rate to produce homogentisate. Upon oxidation, homogentisate forms reactive intermediates and pigment, which is deposited in various tissues particularly in joints and connective tissue. In hawkinsinuria, a very rare condition, data suggest that an aberrant metabolism of 4-hydroxyphenylpyruvate in some cases may lead to failure to thrive, acidosis, and excretion of a characteristic metabolite pattern.</p

    Tetrahydrobiopterin treatment in phenylketonuria:A repurposing approach

    Get PDF
    In phenylketonuria (PKU) patients, early diagnosis by neonatal screening and immediate institution of a phenylalanine-restricted diet can prevent severe intellectual impairment. Nevertheless, outcome remains suboptimal in some patients asking for additional treatment strategies. Tetrahydrobiopterin (BH4) could be one of those treatment options, as it may not only increase residual phenylalanine hydroxylase activity in BH4-responsive PKU patients, but possibly also directly improves neurocognitive functioning in both BH4-responsive and BH4-unresponsive PKU patients. In the present review, we aim to further define the theoretical working mechanisms by which BH4 might directly influence neurocognitive functioning in PKU having passed the blood-brain barrier. Further research should investigate which of these mechanisms are actually involved, and should contribute to the development of an optimal BH4 treatment regimen to directly improve neurocognitive functioning in PKU. Such possible repurposing approach of BH4 treatment in PKU may improve neuropsychological outcome and mental health in both BH4-responsive and BH4-unresponsive PKU patients

    Preventive use of nitisinone in alkaptonuria

    Get PDF
    Abstract Alkaptonuria (AKU, OMIM 203500) is a rare congenital disorder caused by a deficiency of the enzyme homogentisate-1,2,-dioxygenase. The long-term consequences of AKU are joint problems, cardiac valve abnormalities and renal problems. Landmark intervention studies with nitisinone 10Β mg daily, suppressing an upstream enzyme activity, demonstrated its beneficial effects in AKU patients with established complications, which usually start to develop in the fourth decade. Lower dose of nitisinone in the range of 0.2–2Β mg daily will already reduce urinary homogentisic acid (uHGA) excretion by > 90%, which may prevent AKU-related complications earlier in the course of the disease while limiting the possibility of side-effects related to the increase of plasma tyrosine levels caused by nitisinone. Future preventive studies should establish the lowest possible dose for an individual patient, the best age to start treatment and also collect evidence to which level uHGA excretion should be reduced to prevent complications

    Communication of an Abnormal Metabolic New-Born Screening Result in The Netherlands:The Parental Perspective

    Get PDF
    In the Netherlands, abnormal New-Born Screening (NBS) results are communicated to parents by the general practitioner (GP). Good communication and consequential trust in professionals is of the utmost importance in the treatment of phenylketonuria (PKU). The aim of this study was to assess parental satisfaction regarding the communication of an abnormal NBS result for PKU in the Netherlands. An email containing the link to a web-based questionnaire was sent by the Dutch PKU Association to their members. Responses to open questions were categorized, data of both open and closed questions were analysed with descriptive statistics and the Chi-Square test using SPSS. Out of 113 parents of a child with PKU (born between 1979 and 2020), 68 stated they were overall unsatisfied with the first communication of the NBS result. Seventy-five parents indicated that wrong or no information about PKU was given. A significant decrease was found in the number of parents being contact by their own GP over the course of 40 years (p < 0.05). More than half of all parents were overall unsatisfied with the first communication of the abnormal NBS result for PKU. Further research on how to optimize communication of an abnormal NBS results is necessary

    Dietary Liberalization in Tetrahydrobiopterin-Treated PKU Patients:Does It Improve Outcomes?

    Get PDF
    Purpose: this systematic review aimed to assess the effects of dietary liberalization following tetrahydrobiopterin (BH4) treatment on anthropometric measurements, nutritional biomarkers, quality of life, bone density, mental health and psychosocial functioning, and burden of care in PKU patients. Methods: the PubMed, Cochrane, and Embase databases were searched on 7 April 2022. We included studies that reported on the aforementioned domains before and after dietary liberalization as a result of BH4 treatment in PKU patients. Exclusion criteria were: studies written in a language other than English; studies that only included data of a BH4 loading test; insufficient data for the parameters of interest; and wrong publication type. Both within-subject and between-subject analyses were assessed, and meta-analyses were performed if possible. Results: twelve studies containing 14 cohorts and 228 patients were included. Single studies reported few significant differences. Two out of fifteen primary meta-analyses were significant; BMI was higher in BH4-treated patients versus controls (p = 0.02; standardized mean difference (SMD) (95% confidence interval (CI)) = βˆ’0.37 (βˆ’0.67, βˆ’0.06)), and blood cholesterol concentrations increased after starting BH4 treatment (p = 0.01; SMD (CI) = βˆ’0.70 (βˆ’1.26, βˆ’0.15)). Conclusion: there is no clear evidence that dietary liberalization after BH4 treatment has a positive effect on anthropometric measurements, nutritional biomarkers, or quality of life. No studies could be included for bone density, mental health and psychosocial functioning, and burden of care

    Single amino acid supplementation in aminoacidopathies:a systematic review

    Get PDF
    Aminoacidopathies are a group of rare and diverse disorders, caused by the deficiency of an enzyme or transporter involved in amino acid metabolism. For most aminoacidopathies, dietary management is the mainstay of treatment. Such treatment includes severe natural protein restriction, combined with protein substitution with all amino acids except the amino acids prior to the metabolic block and enriched with the amino acid that has become essential by the enzymatic defect. For some aminoacidopathies, supplementation of one or two amino acids, that have not become essential by the enzymatic defect, has been suggested. This so-called single amino acid supplementation can serve different treatment objectives, but evidence is limited. The aim of the present article is to provide a systematic review on the reasons for applications of single amino acid supplementation in aminoacidopathies treated with natural protein restriction and synthetic amino acid mixtures
    • …
    corecore