2 research outputs found

    Allergen specificity of early peanut consumption and effect on development of allergic disease in the Learning Early About Peanut Allergy study cohort

    Get PDF
    BACKGROUND: Early introduction of dietary peanut in high-risk infants with severe eczema, egg allergy, or both prevented peanut allergy at 5 years of age in the Learning Early About Peanut Allergy (LEAP) study. The protective effect persisted after 12 months of avoiding peanuts in the 12-month extension of the LEAP study (LEAP-On). It is unclear whether this benefit is allergen and allergic disease specific. Objective: We sought to assess the effect of early introduction of peanut on the development of allergic disease, food sensitization, and aeroallergen sensitization. METHODS: Asthma, eczema, and rhinoconjunctivitis were diagnosed based on clinical assessment. Reported allergic reactions and consumption of tree nuts and sesame were recorded by questionnaire. Sensitization to food allergens and aeroallergens was determined by means of skin prick testing and specific IgE measurement. RESULTS: A high and increasing burden of food allergen and aeroallergen sensitization and allergic disease was noted across study time points; 76% of LEAP participants had at least 1 allergic disease at 60 months of age. There were no differences in allergic disease between LEAP groups. There were small differences in sensitization and reported allergic reactions for select tree nuts, with levels being higher in the LEAP consumption group. Significant resolution of eczema and sensitization to egg and milk occurred in LEAP participants and was not affected by peanut consumption. CONCLUSION: Early consumption of peanut in infants at high risk of peanut allergy is allergen specific and does not prevent the development of other allergic disease, sensitization to other food allergens and aeroallergens, or reported allergic reactions to tree nuts and sesame. Furthermore, peanut consumption does not hasten the resolution of eczema or egg allergy

    Antiapoptotic serine protease inhibitors contribute to survival of allergenic TH2 cells

    No full text
    BACKGROUND: The mechanisms that regulate maintenance of persistent TH2 cells and potentiate allergic inflammation are not well understood. OBJECTIVE: The function of serine protease inhibitor 2A (Spi2A) was studied in mouse TH2 cells, and the serine protease inhibitor B3 (SERPINB3) and SERPINB4 genes were studied in TH2 cells from patients with grass pollen allergy. METHODS: Spi2A-deficient TH2 cells were studied in in vitro culture or in vivo after challenge of Spi2A knockout mice with ovalbumin in alum. Expression of SERPINB3 and SERPINB4 mRNA was measured in in vitro-cultured TH2 cells and in ex vivo CD27-CD4+ cells and innate lymphoid cell (ILC) 2 from patients with grass pollen allergy by using quantitative PCR. SERPINB3 and SERPINB4 mRNA levels were knocked down in cultured CD27-CD4+ cells with small hairpin RNA. RESULTS: There were lower levels of in vitro-polarized TH2 cells from Spi2A knockout mice (P < .005) and in vivo after ovalbumin challenge (P < .05), higher levels of apoptosis (Annexin V positivity, P < .005), and less lung allergic inflammation (number of lung eosinophils, P < .005). In vitro-polarized TH2 cells from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .05) compared with unpolarized CD4 T cells. CD27-CD4+ from patients with grass pollen allergy expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with CD27+CD4+ cells. ILC2 expressed higher levels of both SERPINB3 and SERPINB4 mRNA (both P < .0005) compared with ILC1. Knockdown of either SERPINB3 or SERPINB4 mRNA (both P < .005) levels resulted in decreased viability of CD27-CD4+ compared with control transduced cells. CONCLUSION: The Serpins Spi2A in mice and SERPINB3 and SERPINB4 in allergic patients control the viability of TH2 cells. This provides proof of principle for a therapeutic approach for allergic disease through ablation of allergic memory TH2 cells through SERPINB3 and SERPINB4 mRNA downregulation
    corecore