85 research outputs found

    Characterization of a Drosophila Alzheimer's Disease Model: Pharmacological Rescue of Cognitive Defects

    Get PDF
    Transgenic models of Alzheimer's disease (AD) have made significant contributions to our understanding of AD pathogenesis, and are useful tools in the development of potential therapeutics. The fruit fly, Drosophila melanogaster, provides a genetically tractable, powerful system to study the biochemical, genetic, environmental, and behavioral aspects of complex human diseases, including AD. In an effort to model AD, we over-expressed human APP and BACE genes in the Drosophila central nervous system. Biochemical, neuroanatomical, and behavioral analyses indicate that these flies exhibit aspects of clinical AD neuropathology and symptomology. These include the generation of Aβ40 and Aβ42, the presence of amyloid aggregates, dramatic neuroanatomical changes, defects in motor reflex behavior, and defects in memory. In addition, these flies exhibit external morphological abnormalities. Treatment with a γ-secretase inhibitor suppressed these phenotypes. Further, all of these phenotypes are present within the first few days of adult fly life. Taken together these data demonstrate that this transgenic AD model can serve as a powerful tool for the identification of AD therapeutic interventions

    Open-source, vendor-independent, automated multi-beat tissue Doppler echocardiography analysis

    Get PDF
    Current guidelines for measuring cardiac function by tissue Doppler recommend using multiple beats, but this has a time cost for human operators. We present an open-source, vendor-independent, drag-and-drop software capable of automating the measurement process. A database of ~8000 tissue Doppler beats (48 patients) from the septal and lateral annuli were analyzed by three expert echocardiographers. We developed an intensity- and gradient-based automated algorithm to measure tissue Doppler velocities. We tested its performance against manual measurements from the expert human operators. Our algorithm showed strong agreement with expert human operators. Performance was indistinguishable from a human operator: for algorithm, mean difference and SDD from the mean of human operators’ estimates 0.48 ± 1.12 cm/s (R2= 0.82); for the humans individually this was 0.43 ± 1.11 cm/s (R2= 0.84), −0.88 ± 1.12 cm/s (R2= 0.84) and 0.41 ± 1.30 cm/s (R2= 0.78). Agreement between operators and the automated algorithm was preserved when measuring at either the edge or middle of the trace. The algorithm was 10-fold quicker than manual measurements (p < 0.001). This open-source, vendor-independent, drag-and-drop software can make peak velocity measurements from pulsed wave tissue Doppler traces as accurately as human experts. This automation permits rapid, bias-resistant multi-beat analysis from spectral tissue Doppler images.European Research Council and British Heart Foundatio

    Penuntun praktikum histologi

    No full text
    xi, 186hlm.ilus

    Endocrinolog\ueda B\ue1sica y Cl\uednica

    No full text
    • …
    corecore