36,811 research outputs found

    Vector screening masses in the quark-gluon plasma and their physical significance

    Full text link
    Static and non-static thermal screening states that couple to the conserved vector current are investigated in the high-temperature phase of QCD. Their masses and couplings to the current are determined at weak coupling, as well as using two-flavor lattice QCD simulations. A consistent picture emerges from the comparison, providing evidence that non-static Matsubara modes can indeed be treated perturbatively. We elaborate on the physical significance of the screening masses.Comment: 4 pages, 3 figures. Submitted as a contribution to the proceedings of the Quark Matter 2014 conference (talk given by H. Meyer

    A relation between screening masses and real-time rates

    Get PDF
    Thermal screening masses related to the conserved vector current are determined for the case that the current carries a non-zero Matsubara frequency, both in a weak-coupling approach and through lattice QCD. We point out that such screening masses are sensitive to the same infrared physics as light-cone real-time rates. In particular, on the perturbative side, the inhomogeneous Schrodinger equation determining screening correlators is shown to have the same general form as the equation implementing LPM resummation for the soft-dilepton and photon production rates from a hot QCD plasma. The static potential appearing in the equation is identical to that whose soft part has been determined up to NLO and on the lattice in the context of jet quenching. Numerical results based on this potential suggest that screening masses overshoot the free results (multiples of 2piT) more strongly than at zero Matsubara frequency. Four-dimensional lattice simulations in two-flavour QCD at temperatures of 250 and 340 MeV confirm the non-static screening masses at the 10% level. Overall our results lend support to studies of jet quenching based on the same potential at T > 250 MeV.Comment: 32 pages. v2: clarifications added, typos corrected; published versio

    Antiscreening of the Ampere force in QED and QCD plasmas

    Full text link
    The static forces between electric charges and currents are modified at the loop level by the presence of a plasma. While electric charges are screened, currents are not. The effective coupling constant at long distances is enhanced in both cases as compared to the vacuum, and by different amounts, a clear sign that Lorentz symmetry is broken. We investigate these effects quantitatively, first in a QED plasma and secondly using non-perturbative simulations of QCD with two light degenerate flavors of quarks.Comment: 17 pages, 8 figure

    The pion quasiparticle in the low-temperature phase of QCD

    Full text link
    We investigate the properties of the pion quasiparticle in the low-temperature phase of two-flavor QCD on the lattice with support from chiral effective theory. We find that the pion quasiparticle mass is significantly reduced compared to its value in the vacuum, by contrast with the static screening mass, which increases with temperature. By a simple argument, near the chiral limit the two masses are expected to determine the quasiparticle dispersion relation. Analyzing two-point functions of the axial charge density at non-vanishing spatial momentum, we find that the predicted dispersion relation and the residue of the pion pole are simultaneously consistent with the lattice data at low momentum. The test, based on fits to the correlation functions, is confirmed by a second analysis using the Backus-Gilbert method.Comment: 22 pages, 8 figure

    Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors

    Full text link
    We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures T/Tc=0.156,0.8,1.0,1.25T/T_c=0.156, 0.8, 1.0, 1.25 and 1.671.67 with Tc203T_c\simeq203MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of 270\simeq270MeV. Exploiting exact sum rules and applying a phenomenologically motivated ansatz allows us to determine the spectral function ρ(ω,T)\rho(\omega,T) via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find evidence for the dissociation of the ρ\rho meson by resolving its spectral weight at the available temperatures. We also apply the Backus-Gilbert method as a model-independent approach to this problem. At any given frequency, it yields a local weighted average of the true spectral function. We use this method to compare kinetic theory predictions and previously published phenomenological spectral functions to our lattice study.Comment: 28 pages, 6 figure

    Chiral dynamics in the low-temperature phase of QCD

    Full text link
    We investigate the low-temperature phase of QCD and the crossover region with two light flavors of quarks. The chiral expansion around the point (T,mq=0)(T, m_q = 0) in the temperature vs. quark-mass plane indicates that a sharp real-time excitation exists with the quantum numbers of the pion. We determine its dispersion relation and test the applicability of the chiral expansion. The time-dependent correlators are also analyzed using the Maximum Entropy Method (MEM), yielding consistent results. Finally, we test the predictions of ordinary chiral perturbation theory around the point (T=0,mq=0)(T = 0, m_q = 0) for the temperature dependence of static observables. Around the crossover temperature, we find that all quantities considered depend only mildly on the quark mass in the considered range 8MeV mˉMSˉ\leq \bar{m}^{\bar{\text{MS}}} \leq 15MeV.Comment: 7 pages, 5 figures, talk presented at the 32nd International Symposium on Lattice Field Theory (Lattice 2014), 23 - 28 June, 2014 Columbia University New York, NY, US
    corecore