1 research outputs found
Entanglement entropy in collective models
We discuss the behavior of the entanglement entropy of the ground state in
various collective systems. Results for general quadratic two-mode boson models
are given, yielding the relation between quantum phase transitions of the
system (signaled by a divergence of the entanglement entropy) and the
excitation energies. Such systems naturally arise when expanding collective
spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a
second step, we analyze several such models (the Dicke model, the two-level BCS
model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and
investigate the properties of the entanglement entropy in the whole parameter
range. We show that when the system contains gapless excitations the
entanglement entropy of the ground state diverges with increasing system size.
We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure