9 research outputs found

    Functional selectivity of EM-2 analogs at the mu-opioid receptor

    Get PDF
    The mu opioid receptor agonists are the most efficacious pain controlling agents but their use is accompanied by severe side effects. More recent developments indicate that some ligands can differentially activate receptor downstream pathways, possibly allowing for dissociation of analgesia mediated through the G protein from the opioid-related side effects mediated by β-arrestin pathway. In an effort to identify such biased ligands, here we present a series of thirteen endomorphin-2 (EM-2) analogs with modifications in positions 1, 2, and/or 3. All obtained analogs behaved as mu receptor selective agonists in calcium mobilization assay carried out on cells expressing opioid receptors and chimeric G proteins. A Bioluminescence Resonance Energy Transfer (BRET) approach was employed to determine the ability of analogs to promote the interaction of the mu opioid receptor with G protein or β-arrestin 2. Nearly half of the developed analogs showed strong bias towards G protein, in addition four compounds were nearly inactive towards β-arrestin 2 recruitment while blocking the propensity of EM-2 to evoke mu-β-arrestin 2 interaction. The data presented here contribute to our understanding of EM-2 interaction with the mu opioid receptor and of the transductional propagation of the signal. In addition, the generation of potent and selective mu receptor agonists strongly biased towards G protein provides the scientific community with novel tools to investigate the in vivo consequences of biased agonism at this receptor

    \u3b1-Glucosidase and advanced glycation end products inhibition with Vernonia amygdalina root and leaf extracts: new data supporting the antidiabetic properties

    No full text
    This study aims to investigate antidiabetic activity of several Vernonia amygdalina extracts to study their potential use in medicine

    Luteolin and Vernodalol as Bioactive Compounds of Leaf and Root Vernonia amygdalina Extracts: Effects on α-Glucosidase, Glycation, ROS, Cell Viability, and In Silico ADMET Parameters

    No full text
    The aqueous decoctions of Vernonia amygdalina (VA) leaves and roots are widely used in traditional African medicine as an antidiabetic remedy. The amount of luteolin and vernodalol in leaf and root extracts was detected, and their role was studied regarding ff-glucosidase activity, bovine serum albumin glycation (BSA), reactive oxygen species (ROS) formation, and cell viability, together with in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Vernodalol did not affect ff-glucosidase activity, whereas luteolin did. Furthermore, luteolin inhibited the formation of advanced glycation end products (AGEs) in a concentration-dependent manner, whereas vernodalol did not reduce it. Additionally, luteolin exhibited high antiradical activity, while vernodalol demonstrated a lower scavenger effect, although similar to that of ascorbic acid. Both luteolin and vernodalol inhibited HT-29 cell viability, showing a half-maximum inhibitory concentration (IC50) of 22.2 mu M ( Log IC50 = 4.65 +/- 0.05) and 5.7 mu M ( Log IC50 = 5.24 +/- 0.16), respectively. Finally, an in silico ADMET study showed that both compounds are suitable candidates as drugs, with appropriate pharmacokinetics. This research underlines for the first time the greater presence of vernodalol in VA roots compared to leaves, while luteolin is prevalent in the latter, suggesting that the former could be used as a natural source of vernodalol. Consequently, root extracts could be proposed for vernodalol-dependent antiproliferative activity, while leaf extracts could be suggested for luteolin-dependent effects, such as antioxidant and antidiabetic effects

    Effects of Croton lechleri sap (Sangre de Drago) on AGEs formation, LDL oxidation and oxidative stress related to vascular diseases

    No full text
    : The sap of Croton lechleri Müll. Arg. (Euphorbiaceae) is well-known in South American traditional medicine. This research investigated its activity against glycation and oxidative stress (glycoxidation) to estimate its usefulness in ROS-related diseases. The activity of the sap on albumin glycation, LDL oxidation and ROS formation was detected. C. lechleri sap inhibited BSA glycation and exhibited a protective effect against LDL oxidation; at the concentration of 0.8 µg/mL, it extended the Lag phase of almost 60%. Furthermore, the sap was studied on cell viability and ROS production in HUVEC showing valuable free-radical scavenging activity. In detail, the sap (1.0 and 10.0 μg/mL) significantly decreased the baseline level and H2O2-induced ROS production in HUVEC. This research showed for the first time the ability of C. lechleri sap to decrease the albumin glycation, LDL oxidation and ROS formation in HUVEC, supporting its potential in vascular diseases

    Comparative Evaluation of the Antiglycation and Anti-α-Glucosidase Activities of Baicalein, Baicalin (Baicalein 7-O-Glucuronide) and the Antidiabetic Drug Metformin

    No full text
    The discovery of new oral antidiabetic drugs remains a priority in medicine. This research aimed to evaluate the activity of the flavonoid baicalein and its natural glucuronide baicalin, compared to the antidiabetic drug metformin, as potential antiglycation, anti-radical, and anti-α-glucosidase agents, in order to assess their potential role in counteracting hyperglycemia-induced tissue damage. The study considered: (i) the BSA assay, to detect the formation of advanced glycation end products (AGEs), (ii) the GK peptide-ribose assay, which evaluates the cross-linking between the peptide and ribose, and (iii) the carbonyl content assay to detect the total carbonyl content, as a biomarker of tissue damage. In addition, to obtain a reliable picture of the antiglycation capacity of the investigated compounds, DPPH scavenging and oxygen radical absorbance capacity (ORAC) assays were performed. Furthermore, the anti-α-glucosidase activity of baicalein and baicalin was detected. Furthermore, to estimate cell permeability, preliminarily, the cytotoxicity of baicalein and baicalin was evaluated in HT-29 human colon adenocarcinoma cells using the MTT assay. Successively, the ability of the compounds to pass through the cytoplasmic membranes of HT-29 cells was detected as a permeability screen to predict in vivo absorption, showing that baicalein passes into cells even if it is quickly modified in various metabolites, being its main derivative baicalin. Otherwise, baicalin per se did not pass through cell membranes. Data show that baicalein is the most active compound in reducing glycation, α-glucosidase activity, and free radicals, while baicalin exhibited similar activities, but did not inhibit the enzyme α-glucosidase

    Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies

    No full text
    Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage

    Pterodon emarginatus Seed Preparations: Antiradical Activity, Chemical Characterization, and In Silico ADMET Parameters of β-caryophyllene and Farnesol

    No full text
    : The study of medicinal plants and their active compounds is relevant to maintaining knowledge of traditional medicine and to the development of new drugs of natural origin with lower environmental impact. From the seeds of the Brazilian plant Pterodon emarginatus, six different preparations were obtained: essential oil (EO), ethanol extract (EthE) prepared using the traditional method, and four extracts using solvents at different polarities, such as n-hexane, chloroform, ethyl acetate, and methanol (HexE, ChlE, EtAE, and MetE). Chemical characterization was carried out with gas chromatography, allowing the identification of several terpenoids as characteristic components. The two sesquiterpenes β-caryophyllene and farnesol were identified in all preparations of Pterodon emarginatus, and their amounts were also evaluated. Furthermore, the total flavonoid and phenolic contents of the extracts were assessed. Successively, the antiradical activity with DPPH and ORAC assays and the influence on cell proliferation by the MTT test on the human colorectal adenocarcinoma (HT-29) cell line of the preparations and the two compounds were evaluated. Lastly, an in silico study of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) showed that β-caryophyllene and farnesol could be suitable candidates for development as drugs. The set of data obtained highlights the potential medicinal use of Pterodon emarginatus seeds and supports further studies of both plant preparations and isolated compounds, β-caryophyllene and farnesol, for their potential use in disease with free radical involvement as age-related chronic disorders

    Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies

    No full text
    Magnolol and luteolin are two natural compounds recognized in several medicinal plants widely used in traditional medicine, including type 2 diabetes mellitus. This research aimed to determine the inhibitory activity of magnolol and luteolin on α-glucosidase activity. Their biological profile was studied by multispectroscopic methods along with inhibitory kinetic analysis and computational experiments. Magnolol and luteolin decreased the enzymatic activity in a concentration-dependent manner. With 0.075 µM α-glucosidase, the IC50 values were similar for both compounds (~ 32 µM) and significantly lower than for acarbose (815 μM). Magnolol showed a mixed-type antagonism, while luteolin showed a non-competitive inhibition mechanism. Thermodynamic parameters suggested that the binding of magnolol was predominantly sustained by hydrophobic interactions, while luteolin mainly exploited van der Waals contacts and hydrogen bonds. Synchronous fluorescence revealed that magnolol interacted with the target, influencing the microenvironment around tyrosine residues, and circular dichroism explained a rearrangement of the secondary structure of α-glucosidase from the initial α-helix to the final conformation enriched with β-sheet and random coil. Docking studies provided support for the experimental results. Altogether, the data propose magnolol, for the first time, as a potential α-glucosidase inhibitor and add further evidence to the inhibitory role of luteolin

    Pharmacology of Kappa Opioid Receptors: Novel Assays and Ligands

    Get PDF
    The present study investigated the in vitro pharmacology of the human kappa opioid receptor using multiple assays, including calcium mobilization in cells expressing chimeric G proteins, the dynamic mass redistribution (DMR) label-free assay, and a bioluminescence resonance energy transfer (BRET) assay that allows measurement of receptor interaction with G protein and β-arrestin 2. In all assays, dynorphin A, U-69,593, and [D-Pro10]dyn(1-11)-NH2 behaved as full agonists with the following rank order of potency [D-Pro10]dyn(1-11)-NH2 > dynorphin A ≥ U-69,593. [Dmt1,Tic2]dyn(1-11)-NH2 behaved as a moderate potency pure antagonist in the kappa-β-arrestin 2 interaction assay and as low efficacy partial agonist in the other assays. Norbinaltorphimine acted as a highly potent and pure antagonist in all assays except kappa-G protein interaction, where it displayed efficacy as an inverse agonist. The pharmacological actions of novel kappa ligands, namely the dynorphin A tetrameric derivative PWT2-Dyn A and the palmitoylated derivative Dyn A-palmitic, were also investigated. PWT2-Dyn A and Dyn A-palmitic mimicked dynorphin A effects in all assays showing similar maximal effects but 3-10 fold lower potency. In conclusion, in the present study, multiple in vitro assays for the kappa receptor have been set up and pharmacologically validated. In addition, PWT2-Dyn A and Dyn A-palmitic were characterized as potent full agonists; these compounds are worthy of further investigation in vivo for those conditions in which the activation of the kappa opioid receptor elicits beneficial effects e.g. pain and pruritus
    corecore