104 research outputs found

    Comparative study on morphological principal component analysis of hyperspectral images

    No full text
    International audienceThis paper deals with a problem of reducing the dimension of hyperspectral images using the principal component analysis. Since hyperspectral images are always reduced before any process, we choose to do this reduction by adding spatial information that can be useful then for classification process; to do it we choose to project our data in new spaces thanks mathematical morphology

    Morphological Principal Component Analysis for Hyperspectral Image Analysis

    No full text
    International audienceThis paper deals with a problem of dimensionality reduction for hyperspectral images using the principal component analysis. Hyper-spectral image reduction is improved by adding structural/spatial information to the spectral information, by means of mathematical morphology tools. Then it can be useful in supervised classification for instance. The key element of the approach is the computation of a covariance matrix which integrates simultaneously both spatial and spectral information. Thanks to these new covariance matrices, new features can be extracted. To prove the efficiency of these new features we have conducted an extended study showing the interest of the structural/spatial information

    Unsupervised Morphological Multiscale Segmentation of Scanning Electron Microscopy Images

    No full text
    This paper deals with a problem of unsupervised multiscale segmentation in the domain of scanning electron microscopy, which is tackled by mathematical morphology techniques. The proposed approach includes various steps. First, the image is decomposed into various compact scales of representation, where objects at each scale are homogeneous in size. Multiscale decomposition is based on a morphological scale-space followed by scale merging using hierarchical clustering and earth mover distance. Then the compact scales are segmented independently using watershed transform. Finally the segmented scales are combined using a tree of objects in order to obtain a multiscale segmentation

    Discretization-Induced Dirichlet Posterior for Robust Uncertainty Quantification on Regression

    Full text link
    Uncertainty quantification is critical for deploying deep neural networks (DNNs) in real-world applications. An Auxiliary Uncertainty Estimator (AuxUE) is one of the most effective means to estimate the uncertainty of the main task prediction without modifying the main task model. To be considered robust, an AuxUE must be capable of maintaining its performance and triggering higher uncertainties while encountering Out-of-Distribution (OOD) inputs, i.e., to provide robust aleatoric and epistemic uncertainty. However, for vision regression tasks, current AuxUE designs are mainly adopted for aleatoric uncertainty estimates, and AuxUE robustness has not been explored. In this work, we propose a generalized AuxUE scheme for more robust uncertainty quantification on regression tasks. Concretely, to achieve a more robust aleatoric uncertainty estimation, different distribution assumptions are considered for heteroscedastic noise, and Laplace distribution is finally chosen to approximate the prediction error. For epistemic uncertainty, we propose a novel solution named Discretization-Induced Dirichlet pOsterior (DIDO), which models the Dirichlet posterior on the discretized prediction error. Extensive experiments on age estimation, monocular depth estimation, and super-resolution tasks show that our proposed method can provide robust uncertainty estimates in the face of noisy inputs and that it can be scalable to both image-level and pixel-wise tasks.Comment: 22 page

    Learning Deep Morphological Networks with Neural Architecture Search

    Full text link
    Deep Neural Networks (DNNs) are generated by sequentially performing linear and non-linear processes. Using a combination of linear and non-linear procedures is critical for generating a sufficiently deep feature space. The majority of non-linear operators are derivations of activation functions or pooling functions. Mathematical morphology is a branch of mathematics that provides non-linear operators for a variety of image processing problems. We investigate the utility of integrating these operations in an end-to-end deep learning framework in this paper. DNNs are designed to acquire a realistic representation for a particular job. Morphological operators give topological descriptors that convey salient information about the shapes of objects depicted in images. We propose a method based on meta-learning to incorporate morphological operators into DNNs. The learned architecture demonstrates how our novel morphological operations significantly increase DNN performance on various tasks, including picture classification and edge detection.Comment: 19 page

    Learning to Generate Training Datasets for Robust Semantic Segmentation

    Full text link
    Semantic segmentation techniques have shown significant progress in recent years, but their robustness to real-world perturbations and data samples not seen during training remains a challenge, particularly in safety-critical applications. In this paper, we propose a novel approach to improve the robustness of semantic segmentation techniques by leveraging the synergy between label-to-image generators and image-to-label segmentation models. Specifically, we design and train Robusta, a novel robust conditional generative adversarial network to generate realistic and plausible perturbed or outlier images that can be used to train reliable segmentation models. We conduct in-depth studies of the proposed generative model, assess the performance and robustness of the downstream segmentation network, and demonstrate that our approach can significantly enhance the robustness of semantic segmentation techniques in the face of real-world perturbations, distribution shifts, and out-of-distribution samples. Our results suggest that this approach could be valuable in safety-critical applications, where the reliability of semantic segmentation techniques is of utmost importance and comes with a limited computational budget in inference. We will release our code shortly
    • …
    corecore