9 research outputs found

    Cooperative light-induced breathing of soft porous crystals via azobenzene buckling

    Get PDF
    Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials

    Molecular Diffusion in a Flexible Mesoporous Metal-Organic Framework over the Course of Structural Contraction

    No full text
    In situ 1H pulsed field gradient (PFG) NMR was used to investigate molecular diffusion of n-butane at 298 K during the negative gas adsorption (NGA) transition caused by contraction of the flexible metal-organic framework DUT-49(Cu). Supported by molecular dynamics simulations, it provided crucial insight to confined diffusion within a highly-flexible pore environment. The self-diffusion coefficients were derived from the experiment and compared with simulations, capturing the diffusion during n-butane adsorption and desorption. This complementary approach has yielded experimental characterization of molecular diffusion mechanisms during the unique process of NGA. <br /

    Elucidating the Structural Evolution of a Highy Porous Responsive Metal-Organic Framework (DUT-49(M)) upon Guests Desorption by Time-Resolved In-Situ Powder X-Ray Diffraction

    No full text
    Variation in the metal centres of M-M paddle-wheel SBU results in the formation of isostructural DUT-49(M) frameworks. However, the porosity of the framework was found to be different for each of the structures. While a high and moderate porosity was obtained for DUT-49(Cu) and DUT-49(Ni), respectively, other members of the series [DUT-49(M); M= Mn, Fe, Co, Zn, Cd] show very low porosity and shapes of the adsorption isotherms which is not expected for op phases of these MOFs. Investigation on those MOFs revealed that those frameworks undergo structural collapse during the solvent removal at the activation step. Thus, herein, we aimed to study the detailed structural transformations that are possibly occurring during the removal of the subcritical fluid from the framework

    Elucidating the Structural Evolution of a Highly Porous Responsive Metal–Organic Framework (DUT-49(M)) upon Guest Desorption by Time-Resolved in Situ Powder X-ray Diffraction

    No full text
    Removal of the guest molecules from the pores of metal–organic frameworks (MOFs) is one of the critical steps in particular for highly porous frameworks associated with high internal stress. In the case of isostructural mesoporous DUT-49(M) (M = Cu, Ni, Mn, Fe, Co, Zn, Cd) frameworks, only DUT-49(Cu) and DUT-49(Ni) could be successfully desolvated so far and only by using supercritical activation. To get a deeper insight into the processes occurring upon the desorption of the solvent from the pores of DUT-49(M), the desolvation was monitored in situ by synchrotron powder X-ray diffraction (PXRD). Analysis of the time-resolved PXRD data shows the full structural transformation pathway of the solid, which involves continuous and discontinuous phase transitions from the open pore (op) to the intermediate pore (ip) phase and from the ip to the contracted pore (cp) phase for DUT-49(Cu) and DUT-49(Ni). For DUT-49(Zn), the op to ip transition is directly followed by amorphization of the framework. All other frameworks show direct amorphization of the op phase

    Integration of Fluorescent Functionality into Pressure Amplifying Metal-Organic Frameworks

    No full text
    The flexibility of soft porous crystals, i.e., their ability to respond to external stimuli with structural changes, is one of the most fascinating features of metal-organic frameworks. In addition to breathing and swelling phenomena of flexible MOFs, negative gas adsorption and pressure amplification is one of the more recent discoveries in this field, initially observed in the cubic DUT-49 framework. In recent years the structural contraction was monitored by physisorption, X‑ray diffraction, NMR and EPR techniques, providing only limited information about the electronic structure of the ligand. In this work we designed a new ligand with a fluorescent core in the linker backbone and synthesized three new MOFs, isoreticular to DUT-49, denoted as DUT‑140(M) (M - Cu, Co, Zn) crystalizing in space group. DUT‑140(Cu) can be desolvated and is highly porous with an accessible apparent surface area of 4870 m2g-1 and a pore volume of 2.59 cm3g-1. Furthermore, it shows flexibility and NGA upon adsorption of subcritical gases. DUT-140(Zn), synthesized using post-synthetic metal exchange, could only be studied with guests in the pores. In addition to the investigation of the adsorption behavior of DUT-140(Cu) spectroscopic and computational methods were used to study the light absorption properties

    On the role of history-dependent adsorbate distribution and metastable states in switchable mesoporous metal-organic frameworks

    Get PDF
    Abstract A unique feature of metal-organic frameworks (MOFs) in contrast to rigid nanoporous materials is their structural switchabilty offering a wide range of functionality for sustainable energy storage, separation and sensing applications. This has initiated a series of experimental and theoretical studies predominantly aiming at understanding the thermodynamic conditions to transform and release gas, but the nature of sorption-induced switching transitions remains poorly understood. Here we report experimental evidence for fluid metastability and history-dependent states during sorption triggering the structural change of the framework and leading to the counterintuitive phenomenon of negative gas adsorption (NGA) in flexible MOFs. Preparation of two isoreticular MOFs differing by structural flexibility and performing direct in situ diffusion studies aided by in situ X-ray diffraction, scanning electron microscopy and computational modelling, allowed assessment of n-butane molecular dynamics, phase state, and the framework response to obtain a microscopic picture for each step of the sorption process

    Cooperative Light-Induced Breathing of Soft Porous Crystals via Azobenzene Buckling

    No full text
    Although light is a prominent stimulus for smart materials, the application of photoswitches as light-responsive triggers for phase transitions of porous materials remains poorly explored. Here we incorporate an azobenzene photoswitch in the backbone of a metal-organic framework producing light-induced structural contraction of the porous network in parallel to gas adsorption. Light-stimulation enables non-invasive spatiotemporal control over the mechanical properties of the framework, which ultimately leads to pore contraction and subsequent guest release via negative gas adsorption. The complex mechanism of light-gated breathing is established by a series of in situ diffraction and spectroscopic experiments, supported by quantum mechanical and molecular dynamic simulations. Unexpectedly, this study identifies a novel light-induced deformation mechanism of constrained azobenzene photoswitches relevant to the future design of light-responsive materials

    CCDC 2040810: Experimental Crystal Structure Determination

    No full text
    Related Article: Simon Krause, Jack D. Evans, Volodymyr Bon, Stefano Crespi, Wojciech Danowski, Wesley R. Browne, Sebastian Ehrling, Francesco Walenszus, Dirk Wallacher, Nico Grimm, Daniel M. Többens, Manfred S. Weiss, Stefan Kaskel, Ben L. Feringa|2022|Nat.Commun.|13|1951|doi:10.1038/s41467-022-29149-

    CCDC 2040811: Experimental Crystal Structure Determination

    No full text
    Related Article: Simon Krause, Jack D. Evans, Volodymyr Bon, Stefano Crespi, Wojciech Danowski, Wesley R. Browne, Sebastian Ehrling, Francesco Walenszus, Dirk Wallacher, Nico Grimm, Daniel M. Többens, Manfred S. Weiss, Stefan Kaskel, Ben L. Feringa|2022|Nat.Commun.|13|1951|doi:10.1038/s41467-022-29149-
    corecore