6 research outputs found

    Dysregulation of the Expression of Asparagine-Linked Glycosylation 13 Short Isoform 2 Affects Nephrin Function by Altering Its N-Linked Glycosylation

    Get PDF
    BACKGROUND N-linked glycosylation, which is a post-translational modification process, plays an important role in protein folding, intracellular trafficking and membrane targeting, as well as in regulating the protein function. Recently, we identified a missense variant (p.T141L) in the short isoform 2 of the X-linked gene asparagine-linked glycosylation 13 (ALG13-is2), which segregated with focal segmental glomerulosclerosis and PCCD in a large Australian pedigree; however, any evidence of its pathogenicity was demonstrated. ALG13 gene encodes, through alternative splicing, 2 glycosyltransferase isoforms, which catalyse the second sugar addition of the highly conserved oligosaccharide precursor in the endoplasmic reticulum (ER). Mutations in the long isoform 1 were associated with epilepsy. METHODS AND RESULTS Here, we show a different expression of the 2 isoforms depending on the tissue. Specifically, the long isoform is highly expressed in lungs, ovaries, testes, cerebellum, cortex, retina, pituitary gland, and olfactory bulbs, while the short isoform is highly expressed in mouse podocytes and in human podocyte cell lines, at both mRNA and protein levels. The silencing of ALG13-is2 by specific siRNAs induces an altered N-linked glycosylation pattern of nephrin, as demonstrated by the presence of an additional immunostaining band of about 130 kD. In knock-down cells, immunofluorescence analysis shows perturbed organization of the cytoskeleton and altered localization of nephrin on the cellular membrane. We also demonstrated that the altered pattern of N-linked glycosylation induces an over-expression of binding immunoglobulin protein and calreticulin, suggesting ER stress. CONCLUSIONS These results provide preliminary evidence that ALG13-is2 could be an important modifier of renal filtration defects

    Clinical Features, Cardiovascular Risk Profile, and Therapeutic Trajectories of Patients with Type 2 Diabetes Candidate for Oral Semaglutide Therapy in the Italian Specialist Care

    Get PDF
    Introduction: This study aimed to address therapeutic inertia in the management of type 2 diabetes (T2D) by investigating the potential of early treatment with oral semaglutide. Methods: A cross-sectional survey was conducted between October 2021 and April 2022 among specialists treating individuals with T2D. A scientific committee designed a data collection form covering demographics, cardiovascular risk, glucose control metrics, ongoing therapies, and physician judgments on treatment appropriateness. Participants completed anonymous patient questionnaires reflecting routine clinical encounters. The preferred therapeutic regimen for each patient was also identified. Results: The analysis was conducted on 4449 patients initiating oral semaglutide. The population had a relatively short disease duration (42%  60% of patients, and more often than sitagliptin or empagliflozin. Conclusion: The study supports the potential of early implementation of oral semaglutide as a strategy to overcome therapeutic inertia and enhance T2D management

    Effects of Mecp2 loss of function in embryonic cortical neurons: A bioinformatics strategy to sort out non-neuronal cells variability from transcriptome profiling

    No full text
    BACKGROUND: Mecp2 null mice model Rett syndrome (RTT) a human neurological disorder affecting females after apparent normal pre- and peri-natal developmental periods. Neuroanatomical studies in cerebral cortex of RTT mouse models revealed delayed maturation of neuronal morphology and autonomous as well as non-cell autonomous reduction in dendritic complexity of postnatal cortical neurons. However, both morphometric parameters and high-resolution expression profile of cortical neurons at embryonic developmental stage have not yet been studied. Here we address these topics by using embryonic neuronal primary cultures from Mecp2 loss of function mouse model. RESULTS: We show that embryonic primary cortical neurons of Mecp2 null mice display reduced neurite complexity possibly reflecting transcriptional changes. We used RNA-sequencing coupled with a bioinformatics comparative approach to identify and remove the contribution of variable and hard to quantify non-neuronal brain cells present in our in vitro cell cultures. CONCLUSIONS: Our results support the need to investigate both Mecp2 morphological as well as molecular effect in neurons since prenatal developmental stage, long time before onset of Rett symptoms. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0859-7) contains supplementary material, which is available to authorized users

    Glycosphingolipid metabolic reprogramming drives neural differentiation

    No full text
    Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology
    corecore