502 research outputs found
On-line Joint Limit Avoidance for Torque Controlled Robots by Joint Space Parametrization
This paper proposes control laws ensuring the stabilization of a time-varying
desired joint trajectory, as well as joint limit avoidance, in the case of
fully-actuated manipulators. The key idea is to perform a parametrization of
the feasible joint space in terms of exogenous states. It follows that the
control of these states allows for joint limit avoidance. One of the main
outcomes of this paper is that position terms in control laws are replaced by
parametrized terms, where joint limits must be avoided. Stability and
convergence of time-varying reference trajectories obtained with the proposed
method are demonstrated to be in the sense of Lyapunov. The introduced control
laws are verified by carrying out experiments on two degrees-of-freedom of the
humanoid robot iCub.Comment: 8 pages, 4 figures. Submitted to the 2016 IEEE-RAS International
Conference on Humanoid Robot
Momentum Control of Humanoid Robots with Series Elastic Actuators
Humanoid robots may require a degree of compliance at the joint level for
improving efficiency, shock tolerance, and safe interaction with humans. The
presence of joint elasticity, however, complexifies the design of balancing and
walking controllers. This paper proposes a control framework for extending
momentum based controllers developed for stiff actuators to the case of series
elastic actuators. The key point is to consider the motor velocities as an
intermediate control input, and then apply high-gain control to stabilise the
desired motor velocities achieving momentum control. Simulations carried out on
a model of the robot iCub verify the soundness of the proposed approach
Automatic Gain Tuning of a Momentum Based Balancing Controller for Humanoid Robots
This paper proposes a technique for automatic gain tuning of a momentum based
balancing controller for humanoid robots. The controller ensures the
stabilization of the centroidal dynamics and the associated zero dynamics.
Then, the closed-loop, constrained joint space dynamics is linearized and the
controller's gains are chosen so as to obtain desired properties of the
linearized system. Symmetry and positive definiteness constraints of gain
matrices are enforced by proposing a tracker for symmetric positive definite
matrices. Simulation results are carried out on the humanoid robot iCub.Comment: Accepted at IEEE-RAS International Conference on Humanoid Robots
(HUMANOIDS). 201
Genetic Polymorphisms and Ischemic Heart Disease
Although the progression in diagnostic tools, prevention strategies, and therapies, ischemic heart disease still represents the major cause of mortality and morbidity worldwide that globally represents an important problem for individuals and healthcare resources. By convention, ischemic heart disease is associated with the presence of an atherosclerotic plaque that is able to limit the flow in large-medium-sized coronary arteries. Nevertheless, several findings suggest a more complex pathophysiology of ischemic heart disease. At this time, there is no well-defined assessment of myocardial ischemia pathophysiology. Moreover, several data have identified genetic variations at different loci that are linked with ischemic heart disease susceptibility. This chapter aims to examine this complicated disease and to review the evidence on the genetic heritability acting with other factors in determining the presence of ischemic heart disease, due to either an obstruction in epicardial vessels or a dysfunction of coronary microcirculation
- …