169 research outputs found

    Evaluation of the root filling quality with experimental carrier-based obturators: a CLSM and FEG-SEM analysis

    Get PDF
    This study evaluated tubule penetration of GuttaFlow Bioseal with cold single cone or carrier-based technique, under confocal laser scanning microscopy (CLSM). Twenty straight single-rooted teeth were instrumented with Hyflex CM and divided in two groups (n = 10) according to the obturation method: single cold gutta-percha cones; experimental carrier-based obturators. GuttaFlow Bioseal, labelled with Rhodamine B dye, was used as sealer in both groups. Teeth transversally sectioned were observed under CLSM. Percentage of sealer penetration and integrity of sealer layer perimeter were measured. Surface and microstructural characteristics of obturators and gutta-percha cones were compared by FEG-SEM and EDX analysis. No significant differences were found between groups for each examined parameter. Significant differences (P < 0.05) were reported mainly within groups. Integrity was similar among and within groups. FEG-SEM/EDX analysis of obturators revealed the presence of Ba and Zn. Carrier-based obturation technique associated with GuttaFlow Bioseal does not seem to affect sealer penetration into dentinal tubules

    Role of Phytoestrogen Ferutinin in Preventing/Recovering Bone Loss: Results from Experimental Ovariectomized Rat Models

    Get PDF
    In the Chapter 35 of the book are reported observations of recent pubblications on the effect of ferutinin in preventing/recovering severe osteoporosis secondary to ovariectomy in rats. On the basis of the results so far obtained, the authors suggest to enumerate ferutinin among the osteoprotective substances. This fact acquires a more relevant importance in the light of recent tenable evidences reported from various authors concerning the absence of negative side effects by some phytoestrogens (particularly genistein, 8-prenylnaringenin, reveratrol and red clover extract) on the tropism of various organs commonly targeted by estrogens. In conclusion, the results reported not only provide evidence that ferutinin can significantly prevent/recover ovariectomy-induced bone loss in rats, but also that it could protect against the onset of uterus cancer. Although the putative undesired estrogenic-like side effects on uterus of such phytoestrogen have not yet been fully investigated, ferutinin could be an interesting safer alternative new candidate for HRT in treatment of post-menopausal symptoms, since it seems to protect from bone loss induced by ovariectomy (Palumbo et al., 2009; Ferretti et al., 2010) and in part to mime the ovarian endocrine function during menopause

    In operando XAS investigation of reduction and oxidation processes in cobalt and iron mixed spinels during the chemical loop reforming of ethanol

    Get PDF
    FeCo2O4 and CoFe2O4 nanoparticles have been studied as oxygen carriers for the Chemical Loop Reforming (CLR) of ethanol. By using in operando X-ray absorption spectroscopy we have followed in real time the chemical and structural changes that take place on the materials as a function of temperature and reactive atmosphere (i.e. ethanol/water streams). During the first step of CLR for both oxides the most active chemical species are the cations in the tetrahedral sites, irrespective of their chemical nature. Quite rapidly the spinel structure is transformed into a mix of wustite-type oxide and metal alloys, but the formation of a metal phase is easier in the case of cobalt, while iron shows a marked preference to form wustite type oxide. Despite the good reducibility of FeCo2O4 imparted by the high amount of cobalt, its performance in the production of hydrogen is quite poor due to an inefficient oxidation by water steam, which is able to oxidize only the outer shell of the nanoparticles. In contrast, CoFe2O4 due to the residual presence of a reducible wustite phase shows a higher hydrogen yield. Moreover, by combining the structural information provided by X-ray absorption spectroscopy with the analysis of the byproducts of ethanol decomposition we could infer that FeCo2O4 is more selective than CoFe2O4 for the selective dehydrogenation of ethanol to acetaldehyde because of the higher amount of Fe(III) ions in tetrahedral sites

    Bone texture modifications during bone regeneration and osteocyte cell-signaling changes in response to treatment with Teriparatide

    Get PDF
    Bone texture modifications during bone regeneration and osteocyte cell-signaling changes in response to treatment with Teriparatid

    Effect of PTH (1-34) on trabecular bone of rat vertebral body in induced-biochemical osteoporosis by calcium- deprived diet

    Get PDF
    Rats fed calcium-deprived diet were used as experimental model for studying bone modelling alterations during biochemical osteoporosis and recovery of bone loss. Such model is suitable to evaluate the possible effects exerted by PTH(1-34) in preventing as well as in recovering metabolic osteoporosis. Three-month-old Sprague Dawley male rats were divided in different groups: some fed normal diet or calcium-deprived diet with/without 40µg/Kg/day PTH(1-34), provided by Eli Lilly-USA, for 4 weeks and some with restoration of normal diet with/without PTH (1-34) for further 4 weeks. To evaluate the occurrence of osteogenesis during the first 4 weeks of the experimental period, rats received three labels of bone deposition at 1st, 20th and 27th day (and then were sacrificed); during the successive 4 weeks (in which those rats previously fed with calcium-deprived diet had restoration of normal diet), animals received three labels of bone deposition at 1st, 7th and 14th day. Histomorphometrical analyses were performed on cortical and trabecular bone taken from the central level of the 5th lumbar vertebral body, transversely sectioned. The results showed that differences among the groups were observed mainly in trabecular bone with respect to cortical one, thus underlining the different role of the two types of bone architecture in mineral and skeletal homeostasis. Concerning trabecular bone, the observations showed that administration of PTH (1-34) during calcium-deprived diet and/or during the restoration of normal diet induces higher deposition of trabecular bone with respect to that recorded in rats that never received PTH(1-34), neither during calcium-deprived diet nor during restoration of normal diet. Since increments of trabecular bone are detectable only after the period of diet restoration (but not before), the authors suggest that a chronic administration of PTH (1-34) is necessary to achieve appreciable results on bone mass recovery

    Induced Biochemical osteoporosis: Effects of 1-month calcium–deprived diet on rat bone remodelling with/without contemporary administration of PTH(1-34)

    Get PDF
    It is known that rats fed calcium-deprived diet develop osteoporosis due to en-hanced bone resorption secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone remodelling alterations during biochemical osteoporosis. This preliminary study is performed in 3 month-old Sprague Dawley male rats, divided into 4 groups (5 rats each): 1) base line, 2) normal diet for 4 weeks, 3) calcium-deprived diet for 4 weeks; 4) calcium-deprived diet for 4 weeks plus contemporary administration of PTH(1-34) 40µg/kg/day. Three labels of osteogenesis were performed at 1st , 20th and 27th day of experimental period in order to evaluate bone formation during animal treatment. His-tomorphometrical analyses were performed on cortical bone of femoral diaphyses, as well as on trabecular bone of distal femoral metaphyses, both transversely sectioned. The preliminary results showed that at femur mid-diaphyseal level the diet induced a reduction of cortical bone area (even if not significant) with enlargement of the medul-lary canal due to endosteal resorption, while periosteal neo-deposition is similar in all groups and particularly abundant in those periosteal regions mainly devoted in answering the mechanical demands. PTH(1-34) treatment seems to reduce endosteal resorption only in those surfaces where periosteal mechanical loading are less consistent. Conversely, PTH(1-34) treatment doesn't seem to affect osteoblast activity. Moreover, in distal femoral metaphyses, diet induced osteoclast activity, with a decrease in the amount of trabecular bone volume, confirming that this architecture is mainly devoted in answering the metabolic demands. The novelty of the proposed model Is the contemporary administration of PTH(1-34) together with calcium deprived diet to evaluate induced-biochemical osteoporosis. This model seems a good starting point for successive studies in order to study bone alterations during unbalanced calcium metabolism frequently occurring in aging and to define time and manner of bone mass recovery

    Effects of PTH(1-34) during fracture healing after experimental bone drilling in rat femur: novel aspects

    Get PDF
    The study concerns the role of PTH(1-34) during bone lesion repair. 3-month-old male Sprague-Dawley rats, in which trans-cortical holes were drilled at femur middiaphysis, were divided in groups with/without Teriparatide administration (40g/ Kg/day), and sacrificed at different times (10, 28, 45 days). In 2002 (1) we demonstrated the occurrence of two successive bone forming processes during both skeletal organogenesis and bone repair, i.e. static (SO) and dynamic (DO) osteogenesis: the former (due to stationary osteoblasts, haphazardly grouped in cords) producing preliminary bad quality trabecular bone, the latter (due to typical polarized osteoblasts organized in ordered movable laminae) producing mechanically valid bone tissue. In brief, the primary function of SO is to provide a rigid scaffold, containing osteocytes (i.e. mechano-sensors), to DO-osteoblastic laminae; therefore, in DO mechanical factors can play a crucial role in transduction of mechanical stresses into biological signals. In the present work, histomorphometric analysis showed that, already after 10 days from drilling, notwithstanding the holes are temporarily filled by the same amount of newly-formed trabecular bone (produced by SO) independently from the treatment, the number of movable osteoblast laminae (typical of DO), covering the trabecular surface, is statistically higher in animals submitted to PTH(1-34) administration than in the control ones; this suggests that the mere effect of Teriparatide is to anticipate the occurrence of dynamic osteogenesis involved in the production of good quality bone more suitable to loading. These findings are also supported by the higher values of microhardness as well as the more ordered-fibered texture (observed by polarized light) in treated animals with respect to control ones that strongly indicates the qualitative (instead of quantitative) effect of PTH (1-34) in improving bone healing. The present investigation could be of crucial importance in further translational clinical research in humans to define the best therapeutic strategies in recovering skeletal lesions, particularly in terms of time of administration of PTH(1-34)

    PRELIMINARY FINDINGS OF A POTENZIATED PIEZOSURGERGICAL DEVICE AT THE RABBIT SKULL

    Get PDF
    The number of available ultrasonic osteotomes has remarkably increased. In vitro and in vivo studies have revealed differences between conventional osteotomes, such as rotating or sawing devices, and ultrasound-supported osteotomes (Piezosurgery®) regarding the micromorphology and roughness values of osteotomized bone surfaces. Objective: the present study compares the micro-morphologies and roughness values of osteotomized bone surfaces after the application of rotating and sawing devices, Piezosurgery Medical® and Piezosurgery Medical New Generation Powerful Handpiece. Methods: Fresh, standard-sized bony samples were taken from a rabbit skull using the following osteotomes: rotating and sawing devices, Piezosurgery Medical® and a Piezosurgery Medical New Generation Powerful Handpiece. The required duration of time for each osteotomy was recorded. Micromorphologies and roughness values to characterize the bone surfaces following the different osteotomy methods were described. The prepared surfaces were examined via light microscopy, environmental surface electron microscopy (ESEM), transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM) and atomic force microscopy. The selective cutting of mineralized tissues while preserving adjacent soft tissue (dura mater and nervous tissue) was studied. Bone necrosis of the osteotomy sites and the vitality of the osteocytes near the sectional plane were investigated, as well as the proportion of apoptosis or cell degeneration. Results and Conclusions: The potential positive effects on bone healing and reossification associated with different devices were evaluated and the comparative analysis among the different devices used was performed, in order to determine the best osteotomes to be employed during cranio-facial surgery

    Biocompatibility Analyses of Al₂O₃-Treated Titanium Plates Tested with Osteocyte and Fibroblast Cell Lines

    Get PDF
    Osseointegration of a titanium implant is still an issue in dental/orthopedic implants durable over time. The good integration of these implants is mainly due to their surface and topography. We obtained an innovative titanium surface by shooting different-in-size particles of Al₂O₃ against the titanium scaffolds which seems to be ideal for bone integration. To corroborate that, we used two different cell lines: MLO-Y4 (murine osteocytes) and 293 (human fibroblasts) and tested the titanium scaffolds untreated and treated (i.e., Al₂O₃ shot-peened titanium surfaces). Distribution, density, and expression of adhesion molecules (fibronectin and vitronectin) were evaluated under scanning electron microscope (SEM) and confocal microscope (CM). DAPI and fluorochrome-conjugated antibodies were used to highlight nuclei, fibronectin, and vitronectin, under CM; cell distribution was analyzed after gold-palladium sputtering of samples by SEM. The engineered biomaterial surfaces showed under SEM irregular morphology displaying variously-shaped spicules. Both SEM and CM observations showed better outcome in terms of cell adhesion and distribution in treated titanium surfaces with respect to the untreated ones. The results obtained clearly showed that this kind of surface-treated titanium, used to manufacture devices for dental implantology: (i) is very suitable for cell colonization, essential prerequisite for the best osseointegration, and (ii) represents an excellent solution for the development of further engineered implants with the target to obtain recovery of stable dental function over time

    Recent developments in maleic acid synthesis from bio-based chemicals

    Get PDF
    This review paper presents the current state of the art on maleic acid synthesis from biomass-derived chemicals over homogeneous or heterogeneous catalysts. It is based on the most recent publications on the topic, which are discussed in details with respect to the observed catalytic performances. The recent developments and the technical drawbacks in the gas and the liquid phases are also reported. In addition, recent results on the mechanistic aspect are discussed giving insights into the probable reaction mechanisms depending on the starting molecule (furan, furfural and 5-hydroxymethylfurfural)
    • …
    corecore