80 research outputs found

    Deterministic Thermal Sculpting of Large-Scale 2D Semiconductor Nanocircuits

    Full text link
    Two-dimensional (2D) Transition Metal Dichalcogenide semiconductor (TMDs) nanocircuits are deterministically engineered over large-scale substrates. The original approach combines large-area physical growth of 2D TMDs layer with high resolution thermal - Scanning Probe Lithography (t-SPL), to reshape the ultra-thin semiconducting layers at the nanoscale level. We demonstrate the additive nanofabrication of few-layer MoS2 nanostructures, grown in the 2H-semiconducting TMD phase, as shown by their Raman vibrational fingerprints and by their optoelectronic response. The electronic signatures of the MoS2 nanostructures are locally identified by Kelvin probe force microscopy providing chemical and compositional contrast at the nanometer scale. Finally, the potential role of the 2D TMD nanocircuits as building blocks of deterministic 2D semiconducting interconnections is demonstrated by high-resolution local conductivity maps showing the competitive transport properties of these large-area nanolayers. This work thus provides a powerful approach to scalable nanofabrication of 2D nano-interconnects and van der Waals heterostructures, and to their integration in real-world ultra-compact electronic and photonic nanodevices.Comment: 17 pages, 4 figure

    Controlling resonant surface modes by arbitrary light induced optical anisotropies

    Get PDF
    In this work the sensitivity of Bloch Surface Waves to laser-induced anisotropy of azo-polymeric thin layers is expe rimentally shown . The nanoscale reshaping of the films via thermal-Scanning Probe Lithography allows to couple light to circular photonic nanocavities, tailoring on-demand resonant BSW confined within the nanocavity

    Free-standing plasmonic nanoarrays for leaky optical waveguiding and sensing

    Get PDF
    Flat optics nanogratings supported on thin free-standing membranes offer the opportunity to combine narrowband waveguided modes and Rayleigh anomalies for sensitive and tunable biosensing. At the surface of high-refractive index Si3N4 membranes we engineered lithographic nanogratings based on plasmonic nanostripes, demonstrating the excitation of sharp waveguided modes and lattice resonances. We achieved fine tuning of these optical modes over a broadband Visible and Near-Infrared spectrum, in full agreement with numerical calculations. This possibility allowed us to select sharp waveguided modes supporting strong near-field amplification, extending for hundreds of nanometres out of the grating and enabling versatile biosensing applications. We demonstrate the potential of this flat-optics platform by devising a proof-of-concept nanofluidic refractive index sensor exploiting the long-range waveguided mode operating at the sub-picoliter scale. This free-standing device configuration, that could be further engineered at the nanoscale, highlights the strong potential of flat-optics nanoarrays in optofluidics and nanofluidic biosensing. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreemen

    Self-Organized Tailoring of Faceted Glass Nanowrinkles for Organic Nanoelectronics

    Get PDF
    Self-organized wrinkled templates are homogeneously fabricated over a large area (cm2) glass substrates by defocused ion beam irradiation, demonstrating the capability to induce and modify at will the out-of-plane tilt of the nanofacets with selected slope. We identify a region of morphological instability which leads to faceting for incidence angles of the ion beam with respect to the surface, \u3b8, in the range 15\ub0 64 \u3b8 64 45\ub0, while for normal incidence, \u3b8 = 0\ub0, and for grazing incidence at about 55\u201360\ub0 a flat morphology is achieved. The crucial parameter which controls the slope of the sawtooth profile is the local ion beam incidence angle on the facets which corresponds to the maximum erosion velocity. For \u3b8 = 30\ub0, improved lateral order of the templates is found which can be exploited for the anisotropic confinement of functional layers. Here, we highlight the crucial role of the 1D nanopatterned template in driving the anisotropic crystallization of spun-cast conductive polymer thin films in registry with the faceted nanogrooves. In response, anisotropic electrical transport properties of the nanopatterned film are achieved with overall improvement higher than 60% with respect to a flat reference, thus showing the potential of such transparent large-area templates in nanoelectronics, optoelectronics, and biosensing

    Spectral tuning of Bloch Surface Wave resonances by light-controlled optical anisotropy

    Get PDF
    Fostered by the recent advancements in photonic technologies, the need for all-optical dynamic control on complex photonic elements is emerging as more and more relevant, especially in integrated photonics and metasurface-based flat-optics. In this framework, optically-induced anisotropy has been proposed as powerful mean enabling tuning functionalities in several planar architectures. Here, we design and fabricate an anisotropic two-dimensional bull’s eye cavity inscribed within an optically-active polymeric film spun on a one-dimensional photonic crystal sustaining Bloch surface waves (BSW). Thanks to the cavity morphology, two surface resonant modes with substantially orthogonal polarizations can be coupled within the cavity from free-space illumination. We demonstrate that a dynamic control on the resonant mode energies can be easily operated by modulating the orientation of the optically-induced birefringence on the surface, via a polarized external laser beam. Overall, reversible blue- and red-shifts of the resonant BSWs are observed within a spectral range of about 2 nm, with a moderate laser power illumination. The polymeric structure is constituted by a novel blend of an azopolymer and a thermally-sensitive resist, which allows a precise patterning via thermal scanning probe lithography, while providing a significant structural integrity against photo-fluidization or mass-flow effects commonly occurring in irradiated azopolymers. The proposed approach based on tailored birefringence opens up new pathways to finely control the optical coupling of localized surface modes to/from free-space radiation, particularly in hybrid organic–inorganic devices

    Uniaxial magnetic anisotropy tuned by nanoscale ripple formation: ion-sculpting of Co/Cu(001) thin films

    Get PDF
    We have investigated the growth of surface nanostructures on a Co/Cu(001) film and the growth of Co films on a nanostructured Cu(001) substrate as well as the effect of nanoscale pattern formation on the film magnetic properties. Here we demonstrate by scanning tunneling microscopy measurements and magneto-optic Kerr effect hysteresis curves that low-temperature grazing-incidence ion sputtering can be used to induce the formation of nanoscale ripples which reduce the four-fold symmetry of the Co film to two-fold, thus generating a strong in-plane uniaxial magnetic anisotropy. The nanostructures and the associated uniaxial magnetic anisotropy were found to be stable up to room temperature

    Broadband and Tunable Light Harvesting in Nanorippled MoS2 Ultrathin Films

    Get PDF
    Nanofabrication of flat optic silica gratings conformally layered with two-dimensional (2D) MoS2 is demonstrated over large area (cm2), achieving a strong amplification of the photon absorption in the active 2D layer. The anisotropic subwavelength silica gratings induce a highly ordered periodic modulation of the MoS2 layer, promoting the excitation of Guided Mode Anomalies (GMA) at the interfaces of the 2D layer. We show the capability to achieve a broadband tuning of these lattice modes from the visible (VIS) to the near-infrared (NIR) by simply tailoring the illumination conditions and/or the period of the lattice. Remarkably, we demonstrate the possibility to strongly confine resonant and nonresonant light into the 2D MoS2 layers via GMA excitation, leading to a strong absorption enhancement as high as 240% relative to a flat continuous MoS2 film. Due to their broadband and tunable photon harvesting capabilities, these large area 2D MoS2 metastructures represent an ideal scalable platform for new generation devices in nanophotonics, photo- detection and -conversion, and quantum technologies
    • …
    corecore