5 research outputs found

    Chemical bath deposition of thin film CdSe layers for use in Se alloyed CdTe solar cells

    Get PDF
    Chemical bath deposition (CBD) was used as a method to deposit CdSe thin films for use in CdTe solar cells. Solution parameters such as precursor stoichiometry, concentration and deposition time, were varied to assess the impact on the morphology of the CdSe films deposited on FTO coated glass. The solution precursors were cadmium acetate and sodium selenosulphite with NH3 used as a complexant to control the release of ions into the solution. It was seen that particle size, surface coverage and thickness were successfully controlled. CdSe films were grown with a band gap of ~1.74 eV and were made into full devices with CdTe. A ternary compound of CdTe1-xSex formed with a band gap of ~1.40 eV, which was shown in an improved EQE in the IR, as well as an improved Jsc. The best device, with an efficiency of 12.3% was produced from a 280 nm thick film with a surface coverage of 59% and grain size of ~600 nm. An increased response at longer wavelengths due to the lowered band gap resulted in a high JSC value of 28.2 mA cm-2 sug

    High efficiency CdTe solar cells by low temperature deposition with MgZnO HRT layer

    Get PDF
    CdTe solar cells have shown high efficiency and the technology is scalable. As a result thin film CdTe modules are competitive with crystalline silicon modules. Thin film CdTe devices with efficiency above 22% have been reported using high substrate temperatures during the deposition process. It is known that high substrate temperatures result in large grain size with a reduced number of grain boundaries and this is believed to contribute to the high efficiency. However, use of high temperature requires robust substrates and excludes the use of most flexible substrate materials. It also involves higher energy consumption and more complicated machinery. In this work we present a process for high efficiency solar cells with an improved front contact, by introducing magnesium-doped zinc oxide high resistance transparent layer. By optimizing the fabrication process we have achieved a conversion efficiency exceeding 16%, which is one of the highest reported for substrate temperatures below 500°C

    Magnesium-doped zinc oxide as a high resistance transparent layer for thin film CdS/CdTe solar cells

    No full text
    Magnesium-doped Zinc Oxide (MZO) was used as an alternative high resistance transparent layer for CdS/CdTe thin film solar cells. Thin films of MZO were deposited by RF magnetron sputtering and deposited on an Indium Tin Oxide contact (ITO). Thin film CdTe devices including a MZO high resistance transparent layer deposited at above 300â—¦C yielded a mean efficiency exceeding 10.5 %. This compares with an efficiency of 8.2 % without the MZO layer. The improvement in efficiency was due to a higher open circuit voltage and fill factor. Lowering the deposition temperature of MZO reduced the performance of the devices

    Analysis and optimisation of the glass/TCO/MZO stack for thin film CdTe solar cells

    No full text
    Magnesium-doped Zinc Oxide (MZO) films have recently been proposed as a transparent buffer layer for thin film CdTe solar cells. In this study, the band gap of MZO buffer layers was tuned for CdTe solar cells by increasing the substrate temperature during deposition. Films were deposited by radio-frequency magnetron sputtering. Devices incorporating an optimised MZO buffer layer deposited at 300 °C with a band gap of 3.70 eV yielded a mean efficiency of 12.5% and a highest efficiency of 13.3%. Transmission electron microscopy showed that MZO films are uniformly deposited on the transparent conductive oxide (TCO) layer surface. The favourable band alignment seems to positively counterbalance the low doping level of the MZO layer and its high lattice mismatch with CdTe. Titanium-doped indium oxide, tin-doped indium oxide and aluminium-doped zinc oxide TCOs were also used as alternatives to fluorine-doped tin oxide (FTO), in combination with MZO films. The use of titaniumdoped indium oxide and tin-doped indium oxide TCOs did not improve the device efficiency achieved compared with FTO, however using aluminium-doped zinc oxide coupled with a boro-aluminosilicate glass substrate the mean and highest efficiencies were further improved to 12.6% and 13.4% respectively

    Degradation of Mg-doped zinc oxide buffer layers in thin film CdTe solar cells

    No full text
    Cadmium Sulphide is the conventional n-type buffer layer used in thin film Cadmium Telluride solar cells. It is well known that Cadmium Sulphide causes optical losses and sulphur diffuses into the absorber during high temperature activation. Sputter-deposited Mg-doped ZnO (MZO) has been shown to be an attractive buffer layer for Cadmium Telluride solar cells due to its transparency and tuneable band gap. It is also stable to high temperature processing and avoids diffusion of elements into the cadmium telluride absorber during the cadmium chloride activation treatment. However, degradation is observed in solar cells incorporating MZO buffer layers. Analysis of the MZO film surface potential has revealed significant fluctuations in the thin film work function once the layer is exposed to the atmosphere following deposition. These fluctuations are attributed to the high reactivity to water vapour of the MgO contained in the MZO films. This has been analysed using X-ray Photoelectron Spectroscopy to determine corresponding changes in the surface chemistry. The Zinc Oxide component is relatively stable, but the analysis shows that MgO forms a Mg(OH)2 layer on the MZO surface which forms a secondary barrier at the MZO/CdTe interface and/or at the interface between MZO and the Fluorine-doped SnO2. This affects the Fill Factor and as a consequence it degrades the conversion efficiency
    corecore