6,458 research outputs found
The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors
OBJECTIVE:
Gut barrier is a functional unit organized as a multi-layer system and its multiple functions are crucial for maintaining gut homeostasis. Numerous scientific evidences showed a significant association between gut barrier leaking and gastro-intestinal/extra-intestinal diseases.
MATERIALS AND METHODS:
In this review we focus on the relationship between gut barrier leaking and human health. At the same time we speculate on the possible new role of gut barrier protectors in enhancing and restoring gut barrier physiology with the final goal of promoting gut health.
RESULTS:
The alteration of the equilibrium in gut barrier leads to the passage of the luminal contents to the underlying tissues and thus into the bloodstream, resulting in the activation of the immune response and in the induction of gut inflammation. This permeability alteration is the basis for the pathogenesis of many diseases, including infectious enterocolitis, inflammatory bowel diseases, irritable bowel syndrome, small intestinal bacterial overgrowth, celiac disease, hepatic fibrosis, food intolerances and also atopic manifestations. Many drugs or compounds used in the treatment of gastrointestinal disease are able to alter the permeability of the intestinal barrier. Recent data highlighted and introduced the possibility of using gelatin tannate, a mucosal barrier protector, for an innovative approach in the management of intestinal diseases, allowing an original therapeutic orientation with the aim of enhancing mucus barrier activity and restoring gut barrier.
CONCLUSIONS:
These results suggest how the mucus layer recovering, beside the gut microbiota modulation, exerted by gut barrier protectors could be a useful weapon to re-establish the physiological intestinal homeostasis after an acute and chronic injury
Networks from gene expression time series: characterization of correlation patterns
This paper describes characteristic features of networks reconstructed from
gene expression time series data. Several null models are considered in order
to discriminate between informations embedded in the network that are related
to real data, and features that are due to the method used for network
reconstruction (time correlation).Comment: 10 pages, 3 BMP figures, 1 Table. To appear in Int. J. Bif. Chaos,
July 2007, Volume 17, Issue
Inflamm-aging of the stem cell niche: Breast cancer as a paradigmatic example: Breakdown of the multi-shell cytokine network fuels cancer in aged people.
Inflamm-aging is a relatively new terminology used to describe the age-related increase in the systemic pro-inflammatory status of humans. Here, we represent inflamm-aging as a breakdown in the multi-shell cytokine network, in which stem cells and stromal fibroblasts (referred to as the stem cell niche) become pro-inflammatory cytokine over-expressing cells due to the accumulation of DNA damage. Inflamm-aging self-propagates owing to the capability of pro-inflammatory cytokines to ignite the DNA-damage response in other cells surrounding DNA-damaged cells. Macrophages, the major cellular player in inflamm-aging, amplify the phenomenon, by broadcasting pro-inflammatory signals at both local and systemic levels. On the basis of this, we propose that inflamm-aging is a major contributor to the increase in cancer incidence and progression in aged people. Breast cancer will be presented as a paradigmatic example for this relationship
The Cheeger problem in abstract measure spaces
We consider nonnegative (Formula presented.) -finite measure spaces coupled with a proper functional (Formula presented.) that plays the role of a perimeter. We introduce the Cheeger problem in this framework and extend many classical results on the Cheeger constant and on Cheeger sets to this setting, requiring minimal assumptions on the pair measure space perimeter. Throughout the paper, the measure space will never be asked to be metric, at most topological, and this requires the introduction of a suitable notion of Sobolev spaces, induced by the coarea formula with the given perimeter
Fast and Continuous Foothold Adaptation for Dynamic Locomotion through CNNs
Legged robots can outperform wheeled machines for most navigation tasks
across unknown and rough terrains. For such tasks, visual feedback is a
fundamental asset to provide robots with terrain-awareness. However, robust
dynamic locomotion on difficult terrains with real-time performance guarantees
remains a challenge. We present here a real-time, dynamic foothold adaptation
strategy based on visual feedback. Our method adjusts the landing position of
the feet in a fully reactive manner, using only on-board computers and sensors.
The correction is computed and executed continuously along the swing phase
trajectory of each leg. To efficiently adapt the landing position, we implement
a self-supervised foothold classifier based on a Convolutional Neural Network
(CNN). Our method results in an up to 200 times faster computation with respect
to the full-blown heuristics. Our goal is to react to visual stimuli from the
environment, bridging the gap between blind reactive locomotion and purely
vision-based planning strategies. We assess the performance of our method on
the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds
up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe
foothold adaptation is clearly demonstrated by the overall robot behavior.Comment: 9 pages, 11 figures. Accepted to RA-L + ICRA 2019, January 201
- …