5 research outputs found

    Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Get PDF
    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein.12613

    Importance of killer immunoglobulin-like receptors in allogeneic hematopoietic stem cell transplantation

    Get PDF
    Hematopoietic stem cell transplantation is the treatment of choice for many hematologic diseases, such as multiple myeloma, bone marrow aplasia and leukemia. Human leukocyte antigen (HLA) compatibility is an important tool to prevent post-transplant complications such as graft rejection and graft-versus-host disease, but the high rates of relapse limit the survival of transplant patients. Natural Killer cells, a type of lymphocyte that is a key element in the defense against tumor cells, cells infected with viruses and intracellular microbes, have different receptors on their surfaces that regulate their cytotoxicity. Killer immunoglobulin-like receptors are the most important, interacting consistently with human leukocyte antigen class I molecules present in other cells and thus controlling the activation of natural killer cells. Several studies have shown that certain combinations of killer immunoglobulin-like receptors and human leukocyte antigens (in both donors and recipients) can affect the chances of survival of transplant patients, particularly in relation to the graft-versusleukemia effect, which may be associated to decreased relapse rates in certain groups. This review aims to shed light on the mechanisms and effects of killer immunoglobulin-like receptors - human leukocyte antigen associations and their implications following hematopoietic stem cell transplantation, and to critically analyze the results obtained by the studies presented herein

    Otimização de metodologia para o estudo de genes KIR Methodology optimization for KIR genotyping

    Full text link
    Receptores killer cell immunoglobulin-like (KIRs) são moléculas localizadas na superfície de células natural killer (NK) e em subpopulações de linfócitos T codificadas por genes do cromossomo 19q13.4. A interação entre receptores KIR e moléculas antígeno leucocitário humano (HLA) de classe I determina se células NK exercerão ou não sua função citotóxica e/ou secretora de citocinas ou se esta será inibida. Este trabalho teve por finalidade otimizar a metodologia para a genotipagem KIR, baseando-se nas condições descritas por Martin (2004). A técnica utilizada foi a reação em cadeia da polimerase com primers de sequência específica (PCR-SSP) com iniciadores sintetizados pela Invitrogen® e visualização do produto amplificado em gel de agarose a 2% com brometo de etídio. Adaptações foram realizadas e a concentração de alguns reagentes foi alterada, como a do controle interno de 100 nM para 150 nM, iniciadores específicos senso e antissenso de KIR12.5/12.3, KIR13.5/13.3, KIR14.5/14.3, KIR22.5/22.3 e KIR36.5/36.3 de 500 nM para 750 nM e da solução de MgCl2 de 1,5 mM para 2 mM. As concentrações dos demais reagentes e temperaturas de amplificação foram mantidas. Nessas condições, o uso da Taq DNA polimerase recombinante (Invitrogen®) foi satisfatório. Os resultados das genotipagens de 70 indivíduos foram confirmados por rSSO-Luminex® (One Lambda, Canoga Park, CA, EUA). A tipagem de genes KIR por essa técnica apresentou sensibilidade, especificidade, reprodutibilidade e baixo custo.<br>The killer cell immunoglobulin-like receptors (KIRs) are molecules expressed on natural killer (NK) cells surface and in T-cell subsets encoded by genes located in chromosome 19q13.4. The interaction between KIR receptors and HLA class I molecules determines if the NK cells will fulfill their cytotoxic function and/or cytokine secretion or if this function will be inhibited. The objective of this work was to optimize KIR genotyping method described by Martin (2004). It was used PCR-SSP (polymerase chain reaction-sequence-specific primers) with primers synthesized by Invitrogen® and visualization of the amplified products on 2% agarose gel electrophoresis, containing ethidium bromide. Some adaptations were made and the reagents had their concentrations increased: the internal control from 100 nM to 150 nM, forward and reverse specific primers KIR12.5/12.3, KIR13.5/13.3, KIR14.5/14.3, KIR22.5/22.3 and KIR36.5/36.3 from 500 nM to 750 nM, and MgCl2 solution from 1.5 mM to 2 mM. Other reagent concentrations and amplification temperatures were maintained. Satisfactory results were obtained with Taq DNA Polymerase Recombinant (Invitrogen®). The results of seventy samples were confirmed by rSSO-Luminex® (One Lambda, Canoga Park, CA, USA). This KIR typing method proved to be accurate, specific, reproducible and cost effective

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Full text link
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore