212 research outputs found
Vitamin D Deficiency in Cushing's Disease: Before and After Its Supplementation
Background: The primary objective of the study was to assess serum 25-hydroxyvitamin D [25(OH)D] values in patients with Cushing's disease (CD), compared to controls. The secondary objective was to assess the response to a load of 150,000 U of cholecalciferol. Methods: In 50 patients with active CD and 48 controls, we evaluated the anthropometric and biochemical parameters, including insulin sensitivity estimation by the homeostatic model of insulin resistance, Matsuda Index and oral disposition index at baseline and in patients with CD also after 6 weeks of cholecalciferol supplementation. Results: At baseline, patients with CD showed a higher frequency of hypovitaminosis deficiency (p = 0.001) and lower serum 25(OH)D (p < 0.001) than the controls. Six weeks after cholecalciferol treatment, patients with CD had increased serum calcium (p = 0.017), 25(OH)D (p < 0.001), ISI-Matsuda (p = 0.035), oral disposition index (p = 0.045) and decreased serum PTH (p = 0.004) and total cholesterol (p = 0.017) values than at baseline. Multivariate analysis showed that mean urinary free cortisol (mUFC) was independently negatively correlated with serum 25(OH)D in CD. Conclusions: Serum 25(OH)D levels are lower in patients with CD compared to the controls. Vitamin D deficiency is correlated with mUFC and values of mUFC > 240 nmol/24 h are associated with hypovitaminosis D. Cholecalciferol supplementation had a positive impact on insulin sensitivity and lipids
Nutritional Intervention in Cushing's Disease: The Ketogenic Diet's Effects on Metabolic Comorbidities and Adrenal Steroids
Background: a very low-calorie ketogenic diet (VLCKD) is associated with improvement of metabolic and cardiovascular disorders. We aimed to evaluate the effects of a VLCKD in patients with Cushing's disease (CD) as adjunctive therapy to treatment for the primary disease. Methods: we evaluated clinical, hormonal and metabolic parameters in 15 patients with CD and 15 controls at baseline after 1 week and 3 weeks of VLCKD and, further, after 2 weeks of a low-carbohydrate ketogenic diet (LCKD). Results: after 5 weeks of diet, a significant decrease in BMI (p = 0.002), waist circumference (WC) (p = 0.024), systolic blood pressure (p = 0.015), diastolic blood pressure (p = 0.005), ACTH (p = 0.026), cortisone (p = 0.025), total cholesterol (p = 0.006), LDL cholesterol (p = 0.017), triglycerides (p = 0.016) and alkaline phosphatase (p = 0.008) and a significant increase in HDL cholesterol (p = 0.017), vitamin D (p = 0.015) and oral disposition index (oDI) (p = 0.004) was observed in the CD patients. A significant decrease in BMI (p = 0.003), WC (p = 0.002), systolic blood pressure (p = 0.025), diastolic (p = 0.007) blood pressure and total cholesterol (p = 0.026) and an increase in HDL cholesterol (p = 0.001) and oDI (p < 0.001) was observed in controls. Conclusions: the current study confirms that a ketogenic diet is effective in improving metabolic disorders in CD and shows that a nutritional approach may be combined with conventional CD therapy in order to improve metabolic and cardiovascular comorbidities
Skeletal muscle myopenia in mice model of bile duct ligation and carbon tetrachloride-induced liver cirrhosis
Skeletal muscle myopathy is universal in cirrhotic patients, however, little is known about the main mechanisms involved. The study aims to investigate skeletal muscle morphological, histological, and functional modifications in experimental models of cirrhosis and the principal molecular pathways responsible for skeletal muscle myopathy. Cirrhosis was induced by bile duct ligation (BDL) and carbon tetrachloride (CCl4) administration in mice. Control animals (CTR) underwent bile duct exposure or vehicle administration only. At sacrifice, peripheral muscles were dissected and weighed. Contractile properties of extensor digitorum longus (EDL) were studied in vitro. Muscle samples were used for histological and molecular analysis. Quadriceps muscle histology revealed a significant reduction in cross-sectional area of muscle and muscle fibers in cirrhotic mice with respect to CTR. Kinetic properties of EDL in both BDL and CCl4 were reduced with respect to CTR; BDL mice also showed a reduction in muscle force and a decrease in the resistance to fatigue. Increase in myostatin expression associated with a decrease in AKT-mTOR expressions was observed in BDL mice, together with an increase in LC3 protein levels. Upregulation of the proinflammatory citochines TNF-a and IL6 and an increased expression of NF-kB and MuRF-1 were observed in CCl4 mice. In conclusion, skeletal muscle myopenia was present in experimental models of BDL and CCl4-induced cirrhosis. Moreover, reduction in protein synthesis and activation of protein degradation were the main mechanisms responsible for myopenia in BDL mice, while activation of ubiquitin-pathway through inflammatory cytokines seems to be the main potential mechanism involved in CCl4 mice
Turbulent Flow Chromatography: A Unique Two-Dimensional Liquid Chromatography
Among 2D-LC techniques, a particular approach is commercialized by Thermo Fisher Scientific that may enable the direct introduction of biological samples into an online automated extraction system without any additional pre-treatment: the TurboFlow technology. It combines chemical and size exclusion capability of chromatography columns packed with porous particles in which a turbulent solvent flow is able to separate smaller molecules from larger ones (e.g. proteins). Once extracted, the small molecules can also be transferred to an analytical column for improving separation prior to detection. This is done through a unique plumbing and customized valve-switching arrangement that allows the focusing of molecules onto the second column. This enables a very efficient chromatographic separation. The use of the TurboFlow not only eliminates extensive sample preparation, thus reducing inter-operator variability and matrix effects, but also increases the capacity for high-throughput analyses due to a unique multiplexing technology, in which multiple LC channels are connected to a single detector
Drones and Sensors Ecosystem to Maximise the “Storm Effects” in Case of CBRNe Dispersion in Large Geographic Areas
The advancements in the field of robotics, specifically in the aerial robotics, combined with technological improvements of the capability of drones, have increased dramatically the use of these devices as a valuable tool in a wide range of applications. From civil to commercial and military area, the requirements in the emerging application for monitoring complex scenarios that are potentially dangerous for operators give rise to the need of a more powerful and sophisticated approach. This work aims at proposing the use of swarm drones to increase plume detection, tracking and source declaration for chemical releases. The several advantages which this technology may lead to this research and application fields are investigated, as well as the research and technological activities to be performed to make swarm drones efficient, reliable, and accurate
The Clinical Significance of Unknown Sequence Variants in BRCA Genes
Abstract: Germline mutations in BRCA1/2 genes are responsible for a large proportion of hereditary breast and/or ovarian cancers. Many highly penetrant predisposition alleles have been identified and include frameshift or nonsense mutations that lead to the translation of a truncated protein. Other alleles contain missense mutations, which result in amino acid substitution and intronic variants with splicing effect. The discovery of variants of uncertain/unclassified significance (VUS) is a result that can complicate rather than improve the risk assessment process. VUSs are mainly missense mutations, but also include a number of intronic variants and in-frame deletions and insertions. Over 2,000 unique BRCA1 and BRCA2 missense variants have been identified, located throughout the whole gene (Breast Cancer Information Core Database (BIC database)). Up to 10–20% of the BRCA tests report the identification of a variant of uncertain significance. There are many methods to discriminate deleterious/high-risk from neutral/low-risk unclassified variants (i.e., analysis of the cosegregation in families of the VUS, measure of the influence of the VUSs on the wild-type protein activity, comparison of sequence conservation across multiple species), but only an integrated analysis of these methods can contribute to a real interpretation of the functional and clinical role of the discussed variants. The aim of our manuscript is to review the studies on BRCA VUS in order to clarify their clinical relevance
Diagnostic Accuracy of a New Antigen Test for SARS-CoV-2 Detection
Background and aims: Quick and reliable diagnostic tools play an important role in controlling the spread of the SARS-Cov-2 pandemic. The aim of this study was to evaluate the diagnostic accuracy of a new cyto-salivary antigen test aimed at detecting the presence of antigens for SARS-CoV-2, as compared by the gold standard RT-PCR and a lateral flow test. Methods: A total of 433 healthy volunteers were enrolled in the study and the sensitivity and specificity of the new cyto-salivary antigen test were calculated, as compared to the RT-PCR nasopharyngeal swab and to the lateral flow test. Results: A total of 433 samples were collected and tested at the Mediterranean Fair in Palermo from February 2021 until April 2021. The new cyto-salivary antigen had a sensitivity of 100% and a specificity of 94.2%. The sensitivity and the specificity of the lateral flow test were 55% and 100%, respectively. Conclusions: The new cyto-salivary antigen test detected more positive cases than the RT-PCR in a sample of asymptomatic subjects, demonstrating to be a promising tool for a more sensitive diagnosis of COVID-19. Further studies are warranted to better characterize its diagnostic accuracy
- …