111 research outputs found

    Potential use of human periapical cyst-mesenchymal stem cells (hPCy-MSCs) as a novel stem cell source for regenerative medicine applications

    Get PDF
    Mesenchymal stem cells (MSCs) are attracting growing interest by the scientific community due to their huge regenerative potential. Thus, the plasticity of MSCs strongly suggests the utilization of these cells for regenerative medicine applications. The main issue about the clinical use of MSCs is related to the complex way to obtain them from healthy tissues; this topic has encouraged scientists to search for novel and more advantageous sources of these cells in easily accessible tissues. The oral cavity hosts several cell populations expressing mesenchymal stem cell like-features, furthermore, the access to oral and dental tissues is simple and isolation of cells is very efficient. Thus, oral-derived stem cells are highly attractive for clinical purposes. In this context, human periapical cyst mesenchymal stem cells (hPCy-MSCs) exhibit characteristics similar to other dental-derived MSCs, including their extensive proliferative potential, cell surface marker profile and the ability to differentiate into various cell types such as osteoblasts, adipocytes and neurons. Importantly, hPCy-MSCs are easily collected from the surgically removed periapical cysts; this reusing of biological waste guarantees a smart source of stem cells without any impact on the surrounding healthy tissues. In this review, we report the most interesting research topics related to hPCy-MSCs with a newsworthy discussion about the future insights. This newly discovered cell population exhibits interesting and valuable potentialities that could be of high impact in the future regenerative medicine applications

    Metals used in maxillofacial surgery

    Get PDF
    The goal of maxillofacial surgery is to restore the shape and functionality of maxillofacial region. In the past years, there has been a tremendous progress in this field because of significant advances in biotechnology that provided innovative biomaterials to efficiently reconstruct the maxillofacial injured region. By using appropriate selection of the implant biomaterial, it is possible to reconstruct the native tissue, both in form and function. The ideal biomaterial should mimic native tissues regarding density, strength, and modulus of elasticity. Autografts are currently the gold standard for replacement of missing tissues, but synthetic biomaterials have been widely used because they eliminate the discomfort to take the replacement tissue from the donor site. Among synthetic biomaterials, different metals may be utilized to efficiently reconstruct the maxillofacial injured region. This article makes an effort to summarize the most important metals in use in maxillofacial surgery, and point out advantages and disadvantage of each typ

    Retrospective analysis of the correlation between the facial biotype and the inclination of the upper canine cusp axis to the occlusal plane

    Get PDF
    Permanent maxillary canines are the second most frequently impacted teeth and the prevalence of this clinical condition is estimated to be 1-2% in the general population. The diagnosis of maxillary canine impaction should be based on both clinical and radiographic examinations. The aim of this study was to evaluate the presence of a correlation between the facial biotype and the inclination of the upper cusp axis. A correlation between the total radicular length of the lateral incisors was also evaluated, by comparing the side of impaction with the healthy side. Twenty three patients with a diagnosis of unilateral upper cusp impaction were recruited. For each patient, dental casts and radiographic material (panoramic radiographs and lateral cephalograms) were examined. Statistical analyses were done with Spearman's rank correlation coefficient or Spearman's rho (V). X-ray examinations demonstrated that canine impaction was associated to other dental anomalies (32% of the sample). The mean S angle measurements were 22.9° ± 4.1°, and mean values of the T angle were 34.7°± 4.0°. The mean distance “d” value was 14.6 mm ± 1.2 mm. The mean values of the angle between the upper cusp axis and the perpendicular-to-Fh plane were 20.8 °± 2.6°. Among the 23 subjects recruited, 5 showed values included in the range 25°-45° and 1 an inclination > 45°. The results obtained in the present study demonstrate a significant inverse correlation between the MM angle and the inclination of the upper cusp axis to the perpendicular-to-Fh plan

    FGF-2b and h-PL transform duct and non-endocrine human pancreatic cells into endocrine insulin secreting cells by modulating differentiating genes

    Get PDF
    Background: Diabetes mellitus (DM) is a multifactorial disease orphan of a cure. Regenerative medicine has been proposed as novel strategy for DM therapy. Human fibroblast growth factor (FGF)-2b controls β-cell clusters via autocrine action, and human placental lactogen (hPL)-A increases functional β-cells. We hypothesized whether FGF-2b/hPL-A treatment induces β-cell differentiation from ductal/non-endocrine precursor(s) by modulating specific genes expression. Methods: Human pancreatic ductal-cells (PANC-1) and non-endocrine pancreatic cells were treated with FGF-2b plus hPL-A at 500 ng/mL. Cytofluorimetry and Immunofluorescence have been performed to detect expression of endocrine, ductal and acinar markers. Bromodeoxyuridine incorporation and annexin-V quantified cells proliferation and apoptosis. Insulin secretion was assessed by RIA kit, and electron microscopy analyzed islet-like clusters. Results: Increase in PANC-1 duct cells de-differentiation into islet-like aggregates was observed after FGF-2b/hPL-A treatment showing ultrastructure typical of islets-aggregates. These clusters, after stimulation with FGF-2b/hPL-A, had significant (p < 0.05) increase in insulin, C-peptide, pancreatic and duodenal homeobox 1 (PDX-1), Nkx2.2, Nkx6.1, somatostatin, glucagon, and glucose transporter 2 (Glut-2), compared with control cells. Markers of PANC-1 (Cytokeratin-19, MUC-1, CA19-9) were decreased (p < 0.05). These aggregates after treatment with FGF-2b/hPL-A significantly reduced levels of apoptosis. Conclusions: FGF-2b and hPL-A are promising candidates for regenerative therapy in DM by inducing de-differentiation of stem cells modulating pivotal endocrine genes

    BNT162b2 mRNA COVID-19 vaccine does not impact the honeymoon phase in type 1 diabetes: a case report

    Get PDF
    Type 1 diabetes (T1D), which is caused by the autoimmune destruction of insulin-secreting pancreatic beta cells, represents a high-risk category requiring COVID-19 vaccine prioritization. Although COVID-19 vaccination can lead to transient hyperglycemia (vaccination-induced hyperglycemia; ViHG), its influence on the course of the clinical remission phase of T1D (a.k.a. "honeymoon phase") is currently unknown. Recently, there has been an increasing concern that COVID-19 vaccination may trigger autoimmune phenomena. We describe the case of a 24-year-old young Italian man with T1D who received two doses of the BNT162b2 mRNA (Pfizer-BioNTech) COVID-19 vaccine during a prolonged honeymoon phase. He experienced a transient impairment in glucose control (as evidenced by continuous glucose monitoring) that was not associated with substantial changes in stimulated C-peptide levels and islet autoantibody titers. Nonetheless, large prospective studies are needed to confirm the safety and the immunometabolic impact of the BNT162b2 vaccine in T1D patients during the honeymoon phase. Thus far, T1D patients who are going to receive COVID-19 vaccination should be warned about the possible occurrence of transient ViHG and should undergo strict postvaccination surveillance
    • …
    corecore