73 research outputs found
The mitochondrial genome of Phallusia mammillata and Phallusia fumigata (Tunicata, Ascidiacea): high genome plasticity at intra-genus level
Background: Within Chordata, the subphyla Vertebrata and Cephalochordata (Iancelets) are characterized by a remarkable stability of the mitochondrial (mt) genome, with constancy of gene content and almost invariant gene order, whereas the limited mitochondrial data on the subphylum Tunicata suggest frequent and extensive gene rearrangements, observed also within ascidians of the same genus.
Results: To confirm this evolutionary trend and to better understand the evolutionary dynamics of the mitochondrial genome in Tunicata Ascidiacea, we have sequenced and characterized the complete mt genome of two congeneric ascidian species, Phallusia mammillata and Phallusia fumigata (Phlebobranchiata, Ascidiidae). The two mtDNAs are surprisingly rearranged, both with respect to one another and relative to those of other tunicates and chordates, with gene rearrangements affecting both protein-coding and tRNA genes. The new data highlight the extraordinary variability of ascidian mt genome in base composition, tRNA secondary structure, tRNA gene content, and non-coding regions (number, size, sequence and location). Indeed, both Phallusia genomes lack the trnD gene, show loss/acquisition of DHU-arm in two tRNAs, and have a G+C content two-fold higher than other ascidians. Moreover, the mt genome of P. fumigata presents two identical copies of trnI, an extra tRNA gene with uncertain amino acid specificity, and four almost identical sequence regions. In addition, a truncated cytochrome b, lacking a C-terminal tail that commonly protrudes into the mt matrix, has been identified as a new mt feature probably shared by all tunicates.
Conclusion: The frequent occurrence of major gene order rearrangements in ascidians both at high taxonomic level and within the same genus makes this taxon an excellent model to study the mechanisms of gene rearrangement, and renders the mt genome an invaluable phylogenetic marker to investigate molecular biodiversity and speciation events in this largely unexplored group of basal chordates
Hypervariability of Ascidian Mitochondrial Gene Order: Exposing the Myth of Deuterostome Organelle Genome Stability
The few sequenced mitochondrial (mt) genomes of the class Ascidiacea (Chordata, Tunicata), mostly belonging to congeneric species of the Phlebobranchia order, show extraordinary gene order rearrangements. In order to assess if this hypervariability in gene order is a general feature of Ascidiacea, we report here the gene arrangement of five ascidians belonging to the Aplousobranchia and Stolidobranchia orders. Our data show that Ascidiacea are characterized by: 1) extensive gene order rearrangements both within and between the three major lineages; 2) lack of significant similarities to the gene order of other deuterostomes; and 3) an extent of rearrangements comparable with that of Mollusca (especially the Gastropoda, Bivalvia, and Scaphopoda classes), a phylum with highly rearranged mtDNAs. The only conserved feature is the location of all genes on the same strand, which suggests that selective constraints are related to the mt transcription. Finally, a higher mobility of the tRNA genes is undetectable because of saturation effect, and only the partially conserved cox2-cob gene block seems to retain some phylogenetic signals
Assessing the chronic toxicity of nickel to a tropical marine gastropod and two crustaceans
The mining and processing of nickel ores from tropical regions contributes 40% of the global supply. The potential impact of these activities on tropical marine ecosystems is poorly understood. Due to the lack of ecotoxicity data for tropical marine species, there is currently no available water quality guideline value for nickel that is specific to tropical species. In this study, we investigated the toxicity of nickel to three tropical marine invertebrates, the gastropod Nassarius dorsatus, the barnacle Amphibalanus amphitrite, and the copepod Acartia sinjiensis. All toxicity tests used chronic endpoints, namely larval growth, metamorphosis (transition from nauplii to cyprid larvae) and larval development for the snail, barnacle and copepod respectively. Toxicity tests were carried out under environmentally relevant conditions (i.e. 27-30á”C, salinity 34-36â° pH 8.1-8.4). Copper was also tested for quality assurance purposes and to allow for comparisons with previous studies. The copepod was the most sensitive species to nickel, with development inhibited by 10% (EC10) at 5.5 (5.0-6.0) ”g Ni/L (95% confidence limits (CL)). Based on EC10 values, the gastropod and barnacle showed similar sensitivities to nickel with growth and metamorphosis inhibited by 10% at 64 (37â91) ”g Ni/L and 67 (53â80) ”g Ni/L, respectively. Based on existing data available in the literature, the copepod A. sinjiensis is so far the most sensitive tropical marine species to nickel. This study has provided high quality data which will contribute to the development of a water quality guideline value for nickel in tropical marine waters. A species sensitivity distribution of chronic nickel toxicity used the data generated in this paper supplemented by available literature data, comprising 12 species representing 6 taxonomic groups. A 5% hazard concentration (HC5) was determined as 8.2 ”g/L Ni
Current understanding of the ecological risk of mercury from subsea oil and gas infrastructure to marine ecosystems
Funding Information: This research was funded by the Australian Governmentâs Industry Growth Centre National Energy Resources Australia (NERA) through a National Decommissioning Research Initiative (NDRI) grant to Curtin University (grant number 13266). The NDRI project was funded by eight industry partners including Shell Australia, Esso Australia, Chevron Australia, BHP Petroleum, Woodside Energy, Santos Limited, ConocoPhillips Pipeline Australia, and Vermilion Oil and Gas Australia. Astley Hastings is funded by the National Decommissioning Centre, Scotland, and the University of Aberdeen. Funding Information: The authors thank Professor Claus Otto (Curtin University) and Professor Richard Neilson (National Decommissioning Centre, Aberdeen, UK.) for comments and support to the project team; and Samantha Jarvis (National Environment Resources Australia), Professor Peter Macreadie, Dr Rick Tinker, and the industry partners of the National Decommissioning Research Initiative for helpful comments to this project. This research was funded by the Australian Government's Industry Growth Centre National Energy Resources Australia (NERA) through a National Decommissioning Research Initiative (NDRI) grant to Curtin University (grant number 13266). The NDRI project was funded by eight industry partners including Shell Australia, Esso Australia, Chevron Australia, BHP Petroleum, Woodside Energy, Santos Limited, ConocoPhillips Pipeline Australia, and Vermilion Oil and Gas Australia. Astley Hastings is funded by the National Decommissioning Centre, Scotland, and the University of Aberdeen. Past research has shown that mercury associates with offshore oil and gas pipelines as well as other products associated with the infrastructure, deeming such materials âhazardousâ. However, the current environmental risk assessments for decommissioning activities of such contaminated materials does not take into account the complexity of the compound's nature and the potential harmful effects on e.g. marine food webs. This review paper has outlined these gaps in our current understanding, as well as providing advice on addressing these gaps to ensure that the marine environmental risk assessments reflect the hazardous nature of mercury-contaminated offshore infrastructure. Publisher Copyright: © 2022 The AuthorsPeer reviewedPublisher PD
A review of the potential risks associated with mercury in subsea oil and gas pipelines in Australia
Peer reviewedPublisher PD
Deep Sequencing of Mixed Total DNA without Barcodes Allows Efficient Assembly of Highly Plastic Ascidian Mitochondrial Genomes
Ascidians or sea squirts form a diverse group within chordates, which includes a few thousand members of marine sessile filter-feeding animals. Their mitochondrial genomes are characterized by particularly high evolutionary rates and rampant gene rearrangements. This extreme variability complicates standard polymerase chain reaction (PCR) based techniques for molecular characterization studies, and consequently only a few complete Ascidian mitochondrial genome sequences are available. Using the standard PCR and Sanger sequencing approach, we produced the mitochondrial genome of Ascidiella aspersa only after a great effort. In contrast, we produced five additional mitogenomes (Botrylloides aff. leachii, Halocynthia spinosa, Polycarpa mytiligera, Pyura gangelion, and Rhodosoma turcicum) with a novel strategy, consisting in sequencing the pooled total DNA samples of these five species using one Illumina HiSeq 2000 flow cell lane. Each mitogenome was efficiently assembled in a single contig using de novo transcriptome assembly, as de novo genome assembly generally performed poorly for this task. Each of the new six mitogenomes presents a different and novel gene order, showing that no syntenic block has been conserved at the ordinal level (in Stolidobranchia and in Phlebobranchia). Phylogenetic analyses support the paraphyly of both Ascidiacea and Phlebobranchia, with Thaliacea nested inside Phlebobranchia, although the deepest nodes of the PhlebobranchiaâThaliacea clade are not well resolved. The strategy described here thus provides a cost-effective approach to obtain complete mitogenomes characterized by a highly plastic gene order and a fast nucleotide/amino acid substitution rate
MitoZoa 2.0: a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa
The MITOchondrial genome database of metaZOAns (MitoZoa) is a public resource for comparative analyses of metazoan mitochondrial genomes (mtDNA) at both the sequence and genomic organizational levels. The main characteristics of the MitoZoa database are the careful revision of mtDNA entry annotations and the possibility of retrieving gene order and non-coding region (NCR) data in appropriate formats. The MitoZoa retrieval system enables basic and complex queries at various taxonomic levels using different search menus. MitoZoa 2.0 has been enhanced in several aspects, including: a re-annotation pipeline to check the correctness of protein-coding gene predictions; a standardized annotation of introns and of precursor ORFs whose functionality is post-transcriptionally recovered by RNA editing or programmed translational frameshifting; updates of taxon-related fields and a BLAST sequence similarity search tool. Database novelties and the definition of standard mtDNA annotation rules, together with the user-friendly retrieval system and the BLAST service, make MitoZoa a valuable resource for comparative and evolutionary analyses as well as a reference database to assist in the annotation of novel mtDNA sequences. MitoZoa is freely accessible at http://www.caspur.it/mitozoa
Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity.
Eukaryotic cells contain a population of mitochondria, variable in number and shape, which in turn contain multiple copies of a tiny compact genome (mtDNA) whose expression and function is strictly coordinated with the nuclear one. mtDNA copy number varies between different cell or tissues types, both in response to overall metabolic and bioenergetics demands and as a consequence or cause of specific pathological conditions. Here we present a novel and reliable methodology to assess the effective mtDNA copy number per diploid genome by investigating off-target reads obtained by whole-exome sequencing (WES) experiments. We also investigate whether and how mtDNA copy number correlates with mitochondrial mass, respiratory activity and expression levels. Analyzing six different tissues from three age- and sex-matched human individuals, we found a highly significant linear correlation between mtDNA copy number estimated by qPCR and the frequency of mtDNA off target WES reads. Furthermore, mtDNA copy number showed highly significant correlation with mitochondrial gene expression levels as measured by RNA-Seq as well as with mitochondrial mass and respiratory activity. Our methodology makes thus feasible, at a large scale, the investigation of mtDNA copy number in diverse cell-types, tissues and pathological conditions or in response to specific treatments.This work was supported by Ministero dell'Istruzione, UniversitĂ e Ricerca (projects PRIN-2009, Micromap [PON01_02589], Virtualab [PON01_01297]) and by Consiglio Nazionale delle Ricerche (progetto strategico âMedicina personalizzataâ, progetto strategico âInvecchiamentoâ, progetto bandiera âEpigenâ)
Common genetic variants on chromosome 9p21 are associated with myocardial infarction and type 2 diabetes in an Italian population
<p>Abstract</p> <p>Background</p> <p>A genomic region on chromosome 9p21 has been identified as closely associated with increased susceptibility to coronary artery disease (CAD) and to type 2 diabetes (T2D) although the evidence suggests that the genetic variants within chromosome 9p21 that contribute to CAD are different from those that contribute to T2D.</p> <p>We carried out an association case-control study in an Italian population to test the association between two single nucleotide polymorphisms (SNPs) on the 9p21 locus, rs2891168 and rs10811661, previously reported by the PROCARDIS study, and respectively myocardial infarction (MI) and T2D. Our aim was to confirm the previous findings on a larger sample and to verify the independence of their susceptibility effects: rs2891168 associated with MI but not with T2D and rs10811661 associated with T2D but not with MI.</p> <p>Methods</p> <p>Genomic DNA samples of 2407 Italians with T2D (602 patients), who had had a recent MI (600), or had both diseases (600) and healthy controls (605) were genotyped for the two SNPs. The genotypes were determined by allelic discrimination using a fluorescent-based TaqMan assay.</p> <p>Results</p> <p>SNP rs2891168 was associated with MI, but not with T2D and the G-allele odds ratio (OR) was 1.20 (95% CI 1.02-1.41); SNP rs10811661 was associated with T2D, but not with MI, and the T-allele OR was 1.27 (95% CI 1.04-1.55). ORs estimates from the present study and the PROCARDIS study were pooled and confirmed the previous findings, with greater precision.</p> <p>Conclusions</p> <p>Our replication study showed that rs2891168 and rs10811661 are independently associated respectively with MI and T2D in an Italian population. Pooling our results with those reported by the PROCARDIS group, we also obtained a significant result of association with diabetes for rs10811661 in the European population.</p
Anxiety and depression in keratotic oral lichen planus: a multicentric study from the SIPMO
Objectives: Oral lichen planus with exclusive keratotic reticular, papular, and/or plaque-like lesions (K-OLP) is a clinical pattern of OLP that may be associated with a complex symptomatology and psychological alteration. The aim of the study was to evaluate the prevalence of anxiety (A) and depression (D) in patients with K-OLP, analyzing the potential predictors which can affect mental health status. Methods: Three hundred K-OLP patients versus 300 healthy controls (HC) were recruited in 15 Italian universities. The Numeric Rating Scale (NRS), Total Pain Rating Index (T-PRI), and Hamilton Rating Scales for Depression and for Anxiety (HAM-D and HAM-A) were administered. Results: The K-OLP patients showed statistically higher scores in the NRS, T-PRI, HAM-D, and HAM-A compared with the HC (p-valueâ<â0.001**). A and D were found in 158 (52.7%) and 148 (49.3%) K-OLP patients. Strong linear correlations were identified between HAM-A, HAM-D, NRS, T-PRI, and employment status and between HAM-D, HAM-A, NRS, T-PRI, employment status, and female gender. Multivariate logistic regression revealed that HAM-D and HAM-A showed the greatest increase in the R2 value for A and D in the K-OLP patients, respectively (DR2â=â55.5% p-valueâ<â0.001**; DR2â=â56.5% p-valueâ<â0.001**). Conclusions: The prevalence of A and D is higher in the K-OLP patients compared with the HC, also found in K-OLP subjects without pain, suggesting that the processing of pain may be in a certain way independent of the processing of mood. Clinical relevance: Mood disorders and pain assessment should be carefully performed in relation to K-OLP to obtain a complete analysis of the patients
- âŠ