3 research outputs found
Efficiency of energy transfer in a light-harvesting system under quantum coherence
We investigate the role of quantum coherence in the efficiency of excitation
transfer in a ring-hub arrangement of interacting two-level systems, mimicking
a light-harvesting antenna connected to a reaction center as it is found in
natural photosynthetic systems. By using a quantum jump approach, we
demonstrate that in the presence of quantum coherent energy transfer and
energetic disorder, the efficiency of excitation transfer from the antenna to
the reaction center depends intimately on the quantum superposition properties
of the initial state. In particular, we find that efficiency is sensitive to
symmetric and asymmetric superposition of states in the basis of localized
excitations, indicating that initial state properties can be used as a
efficiency control parameter at low temperatures.Comment: Extended version of original paper. 7 pages, 2 figure