194 research outputs found

    Caterina di Svezia a Roma. agiografia e pellegrinaggio

    Get PDF

    Hydrogen photo-production by mixotrophic cultivation of chlamydomonas reinhardtii: Interaction between organic carbon and nitrogen

    Get PDF
    Hydrogen photo-production by a wild type and two engineered strains of Chlamydomonas reinhardtii was investigated. Growth rate values and hydrogen yields attained as the concentration of acetate and nitrogen vary were compared. In the analysis of microalgal growth, the interaction between organic carbon (acetate) and nitrogen (nitrate) was investigated by recourse to an experimental factorial design. This analysis evidenced the existence of a statistically significant interaction between organic carbon and nitrate. Hydrogen production was attained by cultivating microalgae previously grown in mixotrophic regime with sulphur deprived medium. The influence of varying the photobioreactor headspace on hydrogen production was investigated. This analysis revealed an increase in the hydrogen produced per unit volume of culture of about one order of magnitude when the headspace volume is modified from 100 to 350 mL. This result provides valuable indications on how to design and operate photobioreactors for hydrogen production optimization and was thoroughly discussed in terms of the metabolic pathways activated by sulphur depletion. ©2014, AIDIC Servizi S.r.l

    Lanthanum biosorption by different Saccharomyces cerevisiae strains

    Get PDF
    Biosorption can be a promising technology in rare earth metal separation and recovery due to the low costs of waste biomasses (used as biosorbents) and the high selectivity exploiting specific interaction between metals and biological active sites. In this work, Saccharomyces cerevisiae biomass was used to recover lanthanum. Biosorption properties of two S. cerevisiae strains, wild type and rim20. mutant, have been tested. Potentiometric titrations were carried out for rim20. mutant strain and compared with wild type. Nature of the main active sites and their concentration were determined by implementing mechanistic models. Carboxylic, amino and phosphoric sites are the main groups present. Higher concentration of negatively charged sites was found in rim20. (0.0024 mol/g) than in wild type (0.0022 mol/g). The rate of lanthanum biosorption process is very fast requiring only 10-20 minutes to reach equilibrium condition for both strains. Then biosorption equilibrium tests were done for both biomasses by testing two equilibrium pH (4.0 and 6.0). Maximum uptake capacities (qmax) were: 70 mg/g and 40 mg/g at pH 4.0 for rim20. and wild type, respectively, and 67 mg/g and 80 mg/g at pH 6.0 for wild type and rim20., respectively. These data evidenced that: rim20. mutant had a higher maximum biosorption capacity with respect to wild type counterpart, and that pH had a relevant effect on lanthanum removal. S. cerevisiae yeast denoted good lanthanum biosorption properties and, between tested strains, rim20. was found to be the most promising for such aim

    Two stage process of microalgae cultivation for starch and carotenoid production

    Get PDF
    Biotechnological processes based on microalgae cultivation are promising for several industrial applications. Microalgae are photoautotrophic microorganisms and can thus grow by using renewable and inexpensive resources as sunlight, inorganic salts, water and CO2. They can store high amounts of neutral lipids (bioil), carbohydrates (mainly starch), carotenoids (such as lutein, astaxanthin, beta-carotene), proteins and other molecules. Productions of lipids and carbohydrates have recently received an increasing interest for biofuel production, while proteins, carotenoids and other minor products are usable as feed additives and nutraceutical compounds. Biofuel production from microalgae is not yet economically sustainable, while there are different industrial plants in the world for the production of high values chemicals as carotenoids. Starch production from microalgae has been investigated mainly for the production of biofuels (e.g. bioethanol) by successive fermentation. However, purified starch can be used for other aims such as the production of bioplastics. Superior plants as corn, potato and wheat are currently used for this purpose. However, there are different environmental and economic issues related to the use of fertile lands and edible plants for these kinds of productions. Microalgae can solve these social and ethical issues because they can grow on nonfertile lands and also reach starch productivity per hectare higher than plants. In this work, the production of starch and carotenoids from Scenedesmus sp. microalgal strain is reported. A two-stage process has been developed in order to reduce operative and investment costs. In the first stage, microalgae are cultivated in photoautotrophic conditions and then, when biomass concentration rises and light becomes a limiting factor for growth, microalgae are transferred to a heterotrophic reactor. In this reactor, microalgae are cultivated by using wastewaters as source of nutrients (mainly organic carbon). Microalgae use organic carbon to synthesize starch and simultaneously reduce the content of pollutants in the wastewater (codepuration). Biomass separated by the culture medium is treated for the extraction of lipids containing different antioxidant carotenoids (such as astaxanthin and lutein) and starch granules as raw material for biopolymers

    Effect of lipids and carbohydrates extraction on astaxanthin stability in scenedesmus sp

    Get PDF
    Elevated costs of biomass downstream processing represent a severe limit to the industrial development of microalgal production systems. Biorefinery solutions allowing simultaneously deriving biofuels and extracting high value compounds must be explored to enhance economic feasibility. In this work, the possibility to extract carbohydrates, lipids and astaxanthin from a strain of Scenedesmus sp. is investigated. The analysis is mainly focused on analyzing the effect of consolidated procedures of extraction of carbohydrates and lipids on the degradation and recovery of astaxanthin. Microalgae were cultivated till achieving stationary phase and maintained in this phase to enhance lipids and astaxanthin accumulation. The fractions of total lipids, carbohydrates and astaxanthin of the produced biomass were 17 %, 33 % and 0.02 % respectively. No statistically significant difference in the astaxanthin content determined following Soxhlet extraction and a more gentle extraction method (Yuan et al. 2002) was found. The effect of transesterification conditions was also evaluated revealing a scarce degradation of astaxanthin in response to the achievement of elevated temperature, NaOH and dissolved oxygen concentrations. Reductions in astaxanthin content were in contrast obtained in response to the addition of H2SO4. These reductions were proportional to acid sample concentration. However a regeneration of astaxanthin was obtained by NaOH addition indicating reversibility of the degradation process. In accordance with these results, the possibility to perform biomass saccharification for carbohydrate extraction at progressively lower acid concentrations was investigated. Copyright © 2015, AIDIC Servizi S.r.l
    • …
    corecore