22 research outputs found

    Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris

    Get PDF
    The ability to engineer proteins by directed evolution requires functional expression of the target polypeptide in a recombinant host suitable for construction and screening libraries of enzyme variants. Bacteria and yeast are preferred, but eukaryotic proteins often fail to express in active form in these cells. We have attempted to resolve this problem by identifying mutations in the target gene that facilitate its functional expression in a given recombinant host. Here we examined expression of HRP in Saccharomyces cerevisiae. Through three rounds of directed evolution by random point mutagenesis and screening, we obtained a 40-fold increase in total HRP activity in the S.cerevisiae culture supernatant compared with wild-type, as measured on ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonic acid)] (260 units/l/OD_(600)). Genes from wild-type and two high-activity clones were expressed in Pichia pastoris, where the total ABTS activity reached 600 units/l/OD_(600) in shake flasks. The mutants show up to 5.4-fold higher specific activity towards ABTS and 2.3-fold higher specific activity towards guaiacol

    Correction: Detection of Chlamydia in the peripheral blood cells of normal donors using in vitro culture, immunofluorescence microscopy and flow cytometry techniques

    Get PDF
    BACKGROUND: Chlamydia trachomatis (Ct) and Chlamydia pneumoniae (Cp) are medically significant infectious agents associated with various chronic human pathologies. Nevertheless, specific roles in disease progression or initiation are incompletely defined. Both pathogens infect established cell lines in vitro and polymerase chain reaction (PCR) has detected Chlamydia DNA in various clinical specimens as well as in normal donor peripheral blood monocytes (PBMC). However, Chlamydia infection of other blood cell types, quantification of Chlamydia infected cells in peripheral blood and transmission of this infection in vitro have not been examined. METHODS: Cp specific titers were assessed for sera from 459 normal human donor blood (NBD) samples. Isolated white blood cells (WBC) were assayed by in vitro culture to evaluate infection transmission of blood cell borne chlamydiae. Smears of fresh blood samples (FB) were dual immunostained for microscopic identification of Chlamydia-infected cell types and aliquots also assessed using Flow Cytometry (FC). RESULTS: ELISA demonstrated that 219 (47.7%) of the NBD samples exhibit elevated anti-Cp antibody titers. Imunofluorescence microscopy of smears demonstrated 113 (24.6%) of samples contained intracellular Chlamydia and monoclonals to specific CD markers showed that in vivo infection of neutrophil and eosinophil/basophil cells as well as monocytes occurs. In vitro culture established WBCs of 114 (24.8%) of the NBD samples harbored infectious chlamydiae, clinically a potentially source of transmission, FC demonstrated both Chlamydia infected and uninfected cells can be readily identified and quantified. CONCLUSION: NBD can harbor infected neutrophils, eosinophil/basophils and monocytes. The chlamydiae are infectious in vitro, and both total, and cell type specific Chlamydia carriage is quantifiable by FC

    Evolution favors protein mutational robustness in sufficiently large populations

    Get PDF
    BACKGROUND: An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. RESULTS: Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by existing mathematical theories, and can be quantitatively related to the way that the proteins occupy their neutral network. CONCLUSIONS: Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon may contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations

    Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine

    Get PDF
    Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine

    A Self-Sufficient Peroxide-Driven Hydroxylation Biocatalyst

    No full text
    Directed evolution of the heme domain of cytochrome P450 BM‐3 has resulted in a versatile, highly active peroxide‐driven hydroxylation catalyst (see picture) that requires neither NADPH nor reductase and functions in a cell‐free reaction system. This simplified, “biomimetic” catalyst is amenable to further optimization, for example, to improve stability or alter its substrate range

    Protein engineering of oxygenases for biocatalysis

    No full text
    Oxygenase enzymes have seen limited practical applications because of their complexity, poor stabilities, and often low catalytic rates. However, their ability to perform difficult chemistry with high selectivity and specificity has kept oxygenases at the forefront of engineering efforts. Growing understanding of structure–function relationships and improved protein engineering methods are paving the way for applications of oxygenases in chemical synthesis and bioremediation

    Exploring the Diversity of Heme Enzymes through Directed Evolution

    No full text
    [no abstract

    Thermostabilization of a Cytochrome P450 Peroxygenase

    No full text
    Some like it hot: We previously described a laboratory‐evolved variant of the cytochrome P450 BM‐3 heme domain which functions as a peroxide‐driven hydroxylase (peroxygenase, see picture). This biocatalyst does not require additional proteins or NADPH to drive hydroxylation and is amenable to further improvements through protein engineering. Here we describe a thermostable variant whose half‐life at 57.5 °C is 50 times that of the F87A variant and 250 times that of the wildtype holoenzyme
    corecore