554 research outputs found
Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations
Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow airâseaâice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh numberâbased parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic
Air-snow transfer of nitrate on the East Antarctic plateau â Part 2: An isotopic model for the interpretation of deep ice-core records
Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the airâsnow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (ÎŽ15N) and oxygen isotopic composition (17O}-excess, Î17O) in nitrate. At the airâsnow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of ÎŽ15N in atmospheric and surface snow (skin layer) nitrate as well as in the ÎŽ15N profile in DC snow including the observed extraordinary high positive values (around +300 â°) below 20 \unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the airâsnow interface at DC and in East Antarctica, the simulated Î17O values underestimate the observed Î17O values by a~few~â°. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of ÎŽ15N, Î17O and the apparent fractionation constants (15Ï”app, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and ÎŽ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Î17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Î17O in the primary inputs of nitrate and the Î17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau
Recommended from our members
An isotope dilution model for partitioning of phenylalanine and tyrosine uptake by the liver of lactating dairy cows
An isotope dilution model to describe the partitioning of phenylalanine (PHE) and tyrosine (TYR) in the bovine liver was developed. The model comprises four intracellular and six extracellular pools and various flows connecting these pools and external blood. Conservation of mass principles were applied to generate the fundamental equations describing the behaviour of the system in the steady state. The model was applied to datasets from multi-catheterised dairy cattle during a constant infusion of [1-13C] phenylalanine and [2,3,5,6-2H] tyrosine tracers. Model solutions described the extraction of PHE and TYR from the liver via the portal vein and hepatic artery. In addition, the exchange of free PHE and TYR between extracellular and intracellular pools was explained and the hydroxylation of PHE to TYR was estimated. The model was effective in providing information about the fates of PHE and TYR in the liver and could be used as part of a more complex system describing amino acid metabolism in the whole animal
Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements
Biological oxidation of methane in landfill cover material can be calculated from the carbon isotopic signature (ÎŽ13CCH4) of emitted CH4. Enhanced microbial consumption of methane in the aerobic portion of the landfill cover is indicated by a shift to heavier (less depleted) isotopic values in the residual methane emitted to air. This study was conducted at four landfill sites in southwest England. Measurement of CH4 using a mobile vehicle mounted instrument at the four sites was coupled with Flexfoil bag sampling of ambient air for high-precision isotope analysis. Gas well collection systems were sampled to estimate landfill oxidised proportion. Closed or active status, seasonal variation, cap stripping and site closure impact on landfill isotopic signature were also assessed. The ÎŽ13CCH4 values ranged from â60 to â54â°, with an average value of â57 ± 2â°. Methane emissions from active cells are more depleted in 13C than closed sites. Methane oxidation, estimated from the isotope fractionation, ranged from 2.6 to 38.2%, with mean values of 9.5% for active and 16.2% for closed landfills, indicating that oxidised proportion is highly site specific
Quantification of methane emissions from UK biogas plants
The rising number of operational biogas plants in the UK brings a new emissions category to consider for methane monitoring, quantification and reduction. Minimising methane losses from biogas plants to the atmosphere is critical not only because of their contribution of methane to global warming but also with respect to the sustainability of renewable energy production. Mobile greenhouse gas surveys were conducted to detect plumes of methane emissions from the biogas plants in southern England that varied in their size, waste feed input materials and biogas utilization. Gaussian plume modelling was used to estimate total emissions of methane from ten biogas plants based on repeat passes through the plumes. Methane emission rates ranged from 0.1 to 58.7 kg CH4 hr-1, and the percentage of losses relative to the calculated production rate varied between 0.02 and 8.1%. The average emission rate was 15.9 kg CH4 hr-1, and the average loss was 3.7%. In general, methane emission rates from smaller farm biogas plants were higher than from larger food waste biogas plants. We also suggest that biogas methane emissions may account for between 0.4 and 3.8%, with an average being 1.9% of the total methane emissions in the UK excluding the sewage sludge biogas plants
Is the destruction or removal of atmospheric methane a worthwhile option?
Removing methane from the air is possible, but do the costs outweigh the benefits? This note explores the question of whether removing methane from the atmosphere is justifiable. Destruction of methane by oxidation to CO2 eliminates 97% of the warming impact on a 100-yr time scale. Methane can be oxidized by a variety of methods including thermal or ultraviolet photocatalysis and various processes of physical, chemical or biological oxidizers. Each removal method has energy costs (with the risk of causing embedded CO2 emission that cancel the global warming gain), but in specific circumstances, including settings where air with high methane is habitually present, removal may be competitive with direct efforts to cut fugitive methane leaks. In all cases however, great care must be taken to ensure that the destruction has a net positive impact on the total global warming, and that the resources required would not be better used for stopping the methane from being emitted
Direct evidence of transfer with weakly bound isotopes of He near the Coulomb barrier and implications of fusion
NESTERPartial residue cross sections for fusion and transfer have been measured from the intensities of characteristic gamma-rays for the He + Cu systems at energies near the Coulomb barrier (Vb)
Recommended from our members
Identification of potential methane source regions in Europe using ÎŽ13 CCH4 measurements and trajectory modeling
The methane emissions from the Hungarian Pannonian Basin are not well qualified, due to a lack of measurements of CH4 mole fraction and ÎŽ13CCH4 in the air. This study reports methane measurements in air samples from Hungary, placing them in the context of regional and global background data, to investigate the inputs to the methane burden in Central Europe. CH4 mole fraction and ÎŽ13CCH4 from the Hungarian tall tower station, HegyhĂĄtsĂĄl, and additional data from Mace Head (Ireland) and Zeppelin (Svalbard) are used with back-trajectory modeling to identify central European source areas and their seasonal variation between the summer vegetation and winter heating periods.
Methane measurements in air masses sampled in the European interior, have significantly higher maxima and seasonal amplitudes than at the Mace Head and Zeppelin European background sites. The mean CH4 mole fraction value is about 80 ppb higher than the comparable marine background, and values above 2000 ppb were frequently observed between February 2013 and December 2015. The mean ÎŽ13CCH4 value -47.5±0.3 â° (2Ï) was comparable to values at all three monitoring sites, but specific pollution events were detected at HegyhĂĄtsĂĄl. Concentration weighted trajectory modeling, meteorological parameters, stable carbon isotopic composition (ÎŽ13CCH4), and Miller-Tans analysis show that the main factors influencing CH4 at the HegyhĂĄtsĂĄl, apart from diurnal and seasonal changes in the Planetary Boundary Layer, are emissions from residential heating and industrial CH4 emissions during the winter
Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019
Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH4) and a sink of carbon dioxide (CO2) during summer months. However, precise quantification of this regional CH4 source and CO2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78â000âkm2) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH4 fluxes normalized to wetland area ranged between 5.93â±â1.87âmgâmâ2âhâ1 and 4.44â±â0.64âmgâmâ2âhâ1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO2 sinks ranged between â513â±â74âmgâmâ2âhâ1 and â284â±â89âmgâmâ2âhâ1 and result from net uptake of CO2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N2O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH4 fluxes were found to be significantly higher than the CH4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region
Recommended from our members
The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains
The Planetary Boundaries (PB) framework represents a significant advance in specifying the ecological constraints on human development. However, to enable decision-makers in business and public policy to respect these constraints in strategic planning, the PB framework needs to be developed to generate practical tools. With this objective in mind, we analyse the recent literature and highlight three major scientific and technical challenges in operationalizing the PB approach in decision-making: first, identification of thresholds or boundaries with associated metrics for different geographical scales; second, the need to frame approaches to allocate fair shares in the 'safe operating space' bounded by the PBs across the value chain and; third, the need for international bodies to co-ordinate the implementation of the measures needed to respect the Planetary Boundaries. For the first two of these challenges, we consider how they might be addressed for four PBs: climate change, freshwater use, biosphere integrity and chemical pollution and other novel entities. Four key opportunities are identified: (1) development of a common system of metrics that can be applied consistently at and across different scales; (2) setting 'distance from boundary' measures that can be applied at different scales; (3) development of global, preferably open-source, databases and models; and (4) advancing understanding of the interactions between the different PBs. Addressing the scientific and technical challenges in operationalizing the planetary boundaries needs be complemented with progress in addressing the equity and ethical issues in allocating the safe operating space between companies and sectors
- âŠ