2,010 research outputs found

    Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays

    Full text link
    As photons do not interact with each other, it is interesting to ask whether photonic systems can be modified to exhibit the phases characteristic of strongly coupled many-body systems. We demonstrate how a Mott insulator type of phase of excitations can arise in an array of coupled electromagnetic cavities, each of which is coupled resonantly to a {\em single} two level system (atom/quantum dot/Cooper pair) and can be individually addressed from outside. In the Mott phase each atom-cavity system has the same integral number of net polaritonic (atomic plus photonic) excitations with photon blockade providing the required repulsion between the excitations in each site. Detuning the atomic and photonic frequencies suppresses this effect and induces a transition to a photonic superfluid. We also show that for zero detuning, the system can simulate the dynamics of many body spin systems.Comment: 4 pages, 3 figure

    Work and Quantum Phase Transitions: Is there Quantum Latency?

    Full text link
    We study the physics of quantum phase transitions from the perspective of non-equilibrium thermodynamics. For first order quantum phase transitions, we find that the average work done per quench in crossing the critical point is discontinuous. This leads us to introduce the quantum latent work in analogy with the classical latent heat of first order classical phase transitions. For second order quantum phase transitions the irreversible work is closely related to the fidelity susceptibility for weak sudden quenches of the system Hamiltonian. We demonstrate our ideas with numerical simulations of first, second, and infinite order phase transitions in various spin chain models.Comment: accepted in PR

    Exponential dichotomy for noninvertible linear difference equations: block triangular systems

    Get PDF
    In this paper, block upper triangular systems of linear difference equations are considered, in which the coefficient matrices are not assumed invertible. The relationship between the exponential dichotomy properties of such a system and its associated block diagonal system is studied. The reason it is important to study triangular systems is that any system of linear difference equations is kinematically similar to an upper triangular system. In the bounded invertible case, it is known that for equations on the intervals J = Z(+) or Z(-), a block upper triangular system has an exponential dichotomy if and only if the associated block diagonal system has one. However, when J = Z, only the sufficiency holds. The sufficiency extends to the noninvertible case, provided the off-diagonal matrices are bounded. However, the necessity does not hold even when J = Z(+) or Z(-). Nevertheless, if certain conditions are added, then the necessity does hold and it is also shown that these conditions are needed since it turns out that if both the triangular and diagonal systems have dichotomies, then these extra conditions must hold

    Potential erosion capacity of gravity currents created by changing initial conditions

    Get PDF
    We investigate to what extent the initial conditions (in terms of buoyancy and geometry) of saline gravity currents flowing over a horizontal bottom influence their runout and entrainment capacity. In particular, to what extent the effect of the introduction of an inclined channel reach, just upstream from the lock gate, influences the hydrodynamics of gravity currents and consequently its potential erosion capacity is still an open question. The investigation presented herein focuses on the unknown effects of an inclined lock on the geometry of the current, on the streamwise velocity, on bed shear stress, and on the mechanisms of entrainment and mass exchange. Gravity currents were reproduced in the laboratory through the lock-exchange technique, and systematic tests were performed with different initial densities, combined with five initial volumes of release on horizontal and sloped locks. The inclination of the upstream reach of the channel (the lock) was varied from 0&thinsp;% to 16&thinsp;%, while the lock length was reduced by up to 1∕4 of the initial reference case. We observed that the shape of the current is modified due to the enhanced entrainment of ambient water, which is the region of the current in which this happens most. A counterintuitive relation between slope and mean streamwise velocity was found, supporting previous findings that hypothesized that gravity currents flowing down small slopes experience an initial acceleration followed by a deceleration. For the steepest slope tested, two opposite mechanisms of mass exchange are identified and discussed, i.e., the current entrainment of water from the upper surface due to the enhanced friction at the interface and the head feeding by a rear-fed current. The bed shear stress and the corresponding potential erosion capacity are discussed, giving insights into the geomorphological implications of natural gravity currents caused in different topographic settings.</p

    Transient Accelerated Expansion and Double Quintessence

    Full text link
    We consider Double Quintessence models for which the Dark Energy sector consists of two coupled scalar fields. We study in particular the possibility to have a transient acceleration in these models. In both Double Quintessence models studied here, it is shown that if acceleration occurs, it is necessarily transient. We consider also the possibility to have transient acceleration in two one-field models, the Albrecht-Skordis model and the pure exponential. Using separate conservative constraints (marginalizing over the other parameters) on the effective equation of state weffw_{eff}, the relative density of the Dark Energy ΩQ,0\Omega_{Q,0} and the present age of the universe, we construct scenarios with a transient acceleration that has already ended at the present time, and even with no acceleration at all, but a less conservative analysis using the CMB data rules out the last possibility. The scenario with a transient acceleration ended by today, can be implemented for the range of cosmological parameters Ωm,0≳0.35\Omega_{m,0}\gtrsim 0.35 and h≲0.68h\lesssim 0.68.Comment: Version accepted in Phys. Rev. D, 22 pages, 10 figures, 4 table

    Controle de Sclerotinia sclerotiorum (L.) de Bary e Alternaria spp. em sementes de girassol Helianthus annuus (L.).

    Get PDF
    bitstream/item/77929/1/CNPSO-PESQ.-AND.-04-82.pd

    Red Parkes-Quasars: Evidence for Soft X-ray Absorption

    Get PDF
    The Parkes Half-Jansky Flat Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared continua. If this is to be interpreted as extinction by dust in the line-of-sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the {\it ROSAT} All-Sky Survey provided by Siebert et al. (1998). Significant (>3σ>3\sigma confidence level) correlations between optical (and near-infrared)--to--soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0<AV<60< A_{V}< 6 magnitudes) implied by the observed optical reddening. Excess X-ray absorption by warm (ionised) gas, (ie. a `warm absorber') is not required.Comment: 23 pages of text, 3 figures, to appear in Jan 10 (1999) issue of The Astrophysical Journa
    • …
    corecore