481 research outputs found
Multiple imputation for continuous variables using a Bayesian principal component analysis
We propose a multiple imputation method based on principal component analysis
(PCA) to deal with incomplete continuous data. To reflect the uncertainty of
the parameters from one imputation to the next, we use a Bayesian treatment of
the PCA model. Using a simulation study and real data sets, the method is
compared to two classical approaches: multiple imputation based on joint
modelling and on fully conditional modelling. Contrary to the others, the
proposed method can be easily used on data sets where the number of individuals
is less than the number of variables and when the variables are highly
correlated. In addition, it provides unbiased point estimates of quantities of
interest, such as an expectation, a regression coefficient or a correlation
coefficient, with a smaller mean squared error. Furthermore, the widths of the
confidence intervals built for the quantities of interest are often smaller
whilst ensuring a valid coverage.Comment: 16 page
FactoMineR: An R Package for Multivariate Analysis
In this article, we present FactoMineR an R package dedicated to multivariate data analysis. The main features of this package is the possibility to take into account different types of variables (quantitative or categorical), different types of structure on the data (a partition on the variables, a hierarchy on the variables, a partition on the individuals) and finally supplementary information (supplementary individuals and variables). Moreover, the dimensions issued from the different exploratory data analyses can be automatically described by quantitative and/or categorical variables. Numerous graphics are also available with various options. Finally, a graphical user interface is implemented within the Rcmdr environment in order to propose an user friendly package.
Un autre mode de financement des cultes et de la laïcité est-il possible ?
Cette présentation fait le relevé de diverses propositions visant à modifier le mode d'organisation et/ou de financement des cultes en Belgique
Training imams in Europe. The current status
Une synthèse actualisée d’un rapport de janvier 2006 'Pour une formation des imams en Belgique. Points de référence en Belgique et en Europe' réalisée à la demande de la Fondation Roi Baudouin. Les imams ont un pouvoir d’influence important au sein des communautés musulmanes.
Régulièrement, des voix s’élèvent pour demander que les imams exerçant en Europe puissent également y être formés. Ce rapport étudie l’état de la réflexion en la matière dans sept pays de l’Union européenne, à savoir : la Belgique, la France, l’Allemagne, les Pays-Bas, le Royaume-Uni, la Suède et l’Autriche.
Il se penche aussi sur les types de relations qui existent entre l’état et l’église; en effet, ces relations, construites au fil de l’histoire, varient fortement d’un pays à l’autre.
La question du financement des cultes y est également abordée
The status of imams in Europe
In relation to various researches I had carried out for the King Baudouin Foundation on possible developments regarding imams training in Belgium, EPC and KBF have set up this international conference with European academics and policy makers to broaden the debate and discuss various national situations
Variabilité des dimensions en ACP : cas complet et incomplet
International audienceDans cette présentation, nous nous intéressons à évaluer la stabilité des dimensions en Analyse en Composantes Principales (ACP). La présentation de l'ACP via un modèle à effets fixes permet de proposer une technique de bootstrap des résidus et d'associer des zones de confiance autour de la position des individus et des variables. Cet algorithme est étendu au cas incomplet et permet de prendre en compte l'incertitude supplémentaire due aux données manquantes. Une méthode d'imputation multiple adaptée au cadre de l'ACP est ensuite proposée pour évaluer la variabilité des dimensions due aux données manquantes
missMDA: A Package for Handling Missing Values in Multivariate Data Analysis
We present the R package missMDA which performs principal component methods on incomplete data sets, aiming to obtain scores, loadings and graphical representations despite missing values. Package methods include principal component analysis for continuous variables, multiple correspondence analysis for categorical variables, factorial analysis on mixed data for both continuous and categorical variables, and multiple factor analysis for multi-table data. Furthermore, missMDA can be used to perform single imputation to complete data involving continuous, categorical and mixed variables. A multiple imputation method is also available. In the principal component analysis framework, variability across different imputations is represented by confidence areas around the row and column positions on the graphical outputs. This allows assessment of the credibility of results obtained from incomplete data sets
- …