3 research outputs found
Simple parametrization for the ground-state energy of the infinite Hubbard chain incorporating Mott physics, spin-dependent phenomena and spatial inhomogeneity
Simple analytical parametrizations for the ground-state energy of the
one-dimensional repulsive Hubbard model are developed. The charge-dependence of
the energy is parametrized using exact results extracted from the Bethe-Ansatz.
The resulting parametrization is shown to be in better agreement with highly
precise data obtained from fully numerical solution of the Bethe-Ansatz
equations than previous expressions [Lima et al., Phys. Rev. Lett. 90, 146402
(2003)]. Unlike these earlier proposals, the present parametrization correctly
predicts a positive Mott gap at half filling for any U>0. The construction is
extended to spin-dependent phenomena by parametrizing the
magnetization-dependence of the ground-state energy using further exact results
and numerical benchmarking. Lastly, the parametrizations developed for the
spatially uniform model are extended by means of a simple local-density-type
approximation to spatially inhomogeneous models, e.g., in the presence of
impurities, external fields or trapping potentials. Results are shown to be in
excellent agreement with independent many-body calculations, at a fraction of
the computational cost.Comment: New Journal of Physics, accepte