1,523 research outputs found

    Outcome from Spontaneous CP Violation for B Decays

    Full text link
    In the aspon model solution of the strong CPCP problem, there is a gauged U(1)U(1) symmetry, spontaneously broken by the same vacuum expectation value which breaks CPCP, whose massive gauge boson provides an additional mechanism of weak CPCP violation. We calculate the CPCP asymmetries in BB decays for the aspon model and show that they are typically smaller than those predicted from the standard model. A linear relation between the CPCP asymmetries of different decay processes is obtained.Comment: REVTEX, 9 pages, IFP-486-UNC, NSF-PT-94-1, and UDHEP-01-9

    Eliminating the low-mass axigluon window

    Get PDF
    Using recent collider data, especially on the hadronic width the Z0, we exclude axigluons in the currently allowed low-mass window, namely axigluons in the mass range 50 GeV < M_A < 120 GeV. Combined with hadron collider data from di-jet production, axigluons with masses below roughly 1 TeV are now completely excluded.Comment: 8 pages, no figures, LaTe

    Horizontal Symmetry for Quark and Squark Masses in Supersymmetric SU(5)

    Get PDF
    Recent interest in horizontal symmetry model building has been driven mainly by the large top mass and hence strong hierarchy in quark masses, and the possibility of appropriately constrained soft squark mass matrices, in place of an assumed universality condition, for satisfying the relevant FCNC constraints. Here we present the first successful SUSY-SU(5)SU(5) model that has such a feature. The horizontal symmetry is a gauged (Q12×U(1))H(Q_{12} \times U(1))_H (⊂(SU(2)×U(1))H\subset (SU(2) \times U(1))_H). All nonrenormalizable terms compatible with the symmetry are allowed in the mass matrix constructions. Charged lepton masses can also be accommodated.Comment: 15 pages, latex, 1 latex figure included version to be published in Phys. Rev. Lett. ; some small changes in notations and presentation, a small paragragh and 3 references adde

    Pan-squamous genomic profiling stratified by anatomic tumor site and viral association

    Get PDF
    Background: Squamous cell carcinomas (SCC) have diverse anatomic etiologies but may share common genomic biomarkers. We profiled 7,871 unique SCCs across nine anatomic sites to investigate commonality in genomic alterations (GA), tumor mutational burden (TMB), human papillomavirus (HPV) association, and mutational signatures. Methods: Tissue from over 8,100 unique SCC samples originating from nine anatomic sites (anogenital (anus, cervix, penis, vagina, vulva), esophagus, head and neck, lung, and skin) were sequenced by hybrid capture-based comprehensive genomic profiling to evaluate GA and TMB. About 3% of non-cutaneous SCC samples had UV signatures, indicative of potential primary site misdiagnoses, and were filtered from the analysis. Detection of HPV, including high-risk strains 16, 18, 31, 33, and 45, was implemented through de novo assembly of non-human sequencing reads and BLASTn comparison against all viral nucleotide sequences in the NCBI database. Results: The proportion of HPV+ patients by anatomic site varied, with the highest being anal (91%) and cervical (83%). The mutational landscape of each cohort was similar, regardless of anatomic origin, but clustered based on HPV status. The largest differences in GA frequency as stratified by HPV- vs. HPV+ were TP53 (87% vs. 12%), CDKN2A (45% vs. 6%), and PIK3CA (22% vs. 33%). The median TMB in cases originating from HPV-associated sites was similar, regardless of HPV status. Higher median TMB was observed in lung and skin cases, which exhibited significant enrichment of mutational signatures indicative of tobacco- and UV-induced DNA damage, respectively. Conclusions: HPV+ and HPV- SCC populations have distinct genomic profiles and, for the latter, anatomic site is correlated with TMB distribution, secondary to associated carcinogen exposure. As such, biomarkers such as TMB and UV signature can provide unexpected insight into site of origin misdiagnoses and may correlate with benefit from immune checkpoint inhibitors

    Gluon mass generation without seagull divergences

    Get PDF
    Dynamical gluon mass generation has been traditionally plagued with seagull divergences, and all regularization procedures proposed over the years yield finite but scheme-dependent gluon masses. In this work we show how such divergences can be eliminated completely by virtue of a characteristic identity, valid in dimensional regularization. The ability to trigger the aforementioned identity hinges crucially on the particular Ansatz employed for the three-gluon vertex entering into the Schwinger-Dyson equation governing the gluon propagator. The use of the appropriate three-gluon vertex brings about an additional advantage: one obtains two separate (but coupled) integral equations, one for the effective charge and one for the gluon mass. This system of integral equations has a unique solution, which unambiguously determines these two quantities. Most notably, the effective charge freezes in the infrared, and the gluon mass displays power-law running in the ultraviolet, in agreement with earlier considerations.Comment: 37 pages, 9 figures; minor typos corrected and a few brief explanatory remarks adde

    Aspects of Type 0 String Theory

    Get PDF
    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.Comment: 9 pages, LATEX; submitted to Proceedings of Strings '9

    Comment on ``Majoron emitting neutrinoless double beta decay in the electroweak chiral gauge extensions''

    Get PDF
    We point out that if the majoron-like scheme is implemented within a 331 model, there must exist at least three different mass scales for the scalar vacuum expectation values in the model.Comment: 4 pages, no figures, Revtex. To be published in Physical Review

    Neutrino-Lepton Masses, Zee Scalars and Muon g-2

    Get PDF
    Evidence for neutrino oscillations is pointing to the existence of tiny but finite neutrino masses. Such masses may be naturally generated via radiative corrections in models such as the Zee model where a singlet Zee-scalar plays a key role. We minimally extend the Zee model by including a right-handed singlet neutrino \nu_R. The radiative Zee-mechanism can be protected by a simple U(1)_X symmetry involving only the \nu_R and a Zee-scalar. We further construct a class of models with a single horizontal U(1)_FN (a la Frogatt-Nielsen) such that the mass patterns of the neutrinos and leptons are naturally explained. We then analyze the muon anomalous magnetic moment (g-2) and the flavor changing \mu --> e\gamma decay. The \nu_R interaction in our minimal extension is found to induce the BNL g-2 anomaly, with a light charged Zee-scalar of mass 100-300 GeV.Comment: Version for Phys. Rev. Lett. (typos corrected, minor refinements

    Beta Functions of Orbifold Theories and the Hierarchy Problem

    Full text link
    We examine a class of gauge theories obtained by projecting out certain fields from an N=4 supersymmetric SU(N) gauge theory. These theories are non-supersymmetric and in the large N limit are known to be conformal. Recently it was proposed that the hierarchy problem could be solved by embedding the standard model in a theory of this kind with finite N. In order to check this claim one must find the conformal points of the theory. To do this we calculate the one-loop beta functions for the Yukawa and quartic scalar couplings. We find that with the beta functions set to zero the one-loop quadratic divergences are not canceled at sub-leading order in N; thus the hierarchy between the weak scale and the Planck scale is not stabilized unless N is of the order 10^28 or larger. We also find that at sub-leading orders in N renormalization induces new interactions, which were not present in the original Lagrangian.Comment: 21 pages, LaTeX, 6 figures. Minor clarifications, references adde

    S, T, U parameters in SU(3)C×SU(3)L×U(1)SU(3)_C\times SU(3)_L\times U(1) model with right-handed neutrinos

    Full text link
    The S, T, U parameters in the SU(3)C×SU(3)L×U(1) SU(3)_C\times SU(3)_L\times U(1) model with right -handed neutrinos are calculated. Explicit expressions for the oblique and Z - Z' mixing contributions are obtained. We show that the bilepton oblique contributions to S and T parameters are bounded : −0.085∌<S∌<0.05- 0.085 \stackrel{<}{\sim} S \stackrel{<}{\sim} 0.05 and −0.001∌<T∌<0.08- 0.001 \stackrel{<}{\sim} T \stackrel{<}{\sim} 0.08. The Z - Z' mixing contribution is positive and above 10%, but it will increase fastly with the higher Z' mass. %can be negative. The consequent mass splitting of the bilepton is derived and to be 15%. The limit on the mass of the neutral bilepton in this model is obtained.Comment: Latex, axodraw.sty used, 3 figures, 18 page
    • 

    corecore