164 research outputs found
Decays of metastable vacua in SQCD
The decay rates of metastable SQCD vacua in ISS-type models, both towards
supersymmetric vacua as well as towards other nonsupersymmetric configurations
arising in theories with elementary spectators, are estimated numerically in
the semiclassical approximation by computing the corresponding multifield
bounce configurations. The scaling of the bounce action with respect to the
most relevant dimensionless couplings and ratios of scales is analyzed. In the
case of the decays towards the susy vacua generated by nonperturbative effects,
the results confirm previous analytical estimations of this scaling, obtained
by assuming a triangular potential barrier. The decay rates towards susy vacua
generated by R-symmetry breaking interactions turn out to be more than
sufficiently suppressed for the phenomenologically relevant parameter range,
and their behavior in this regime differs from analytic estimations valid for
parametrically small scale ratios. It is also shown that in models with
spectator fields, even though the decays towards vacua involving nonzero
spectator VEVs don't have a strong parametric dependence on the scale ratios,
the ISS vacuum can still be made long-lived in the presence of R-symmetry
breaking interactions.Comment: 22 pages, 7 figure
A combination of surgery, theranostics, and liquid biopsy - a personalised oncologic approach to treatment of patients with advanced metastatic neuroendocrine neoplasms
Rationale: Neuroendocrine neoplasia (NEN) of small bowel (SBNEN) frequently present with metastatic disease. Theranostics (molecular imaging followed by targeting therapy) allow for personalised medicine. Liquid biopsies enable precise identification of residual disease and real-time monitoring of therapeutic response. Our aim was to determine the clinical utility of a combination of surgery, theranostics, and a multigene blood measurement in metastasised SBNEN. Methods: Inclusion criteria were SBNEN, G1/G2 NEN, initial tumour diagnosis, stage IV NEN, positivity on 68Ga somatostatin analogue PET/CT, eligible for surgery, and 177Lu peptide receptor radionuclide therapy (PRRT). Blood samples for NETest were collected longitudinally. Progression-free survival (PFS) and overall survival (OS) were calculated. NETest results were assessed prior to surgery and during clinical follow-up. Results: A surgical cohort of 39 SBNEN patients met eligibility criteria. Thirty-two patients underwent ileal resection and 7 right hemicolectomy. The mean number of 177Lu PRRT cycles was 4. Mortality was nil. Surgical morbidity was 10.3%. Transient grade 1/2 toxicity occurred in 41% (PRRT). NETest scores (n=9 patients) decreased in 100% following treatment and correlated with diminished tumour volume and disease stabilization following surgery and PRRT. Median follow-up: 78 months. Median PFS and OS: 42.7 and 110 months, respectively. Progression-free survival at 1-, 3-, and 5-years was 79.4%, 57.1% and 40.5%, respectively. Overall survival at 1-, 3-, and 5-years was 97.4%, 97.4%, and 94.1%, respectively. Conclusions: Surgery combined with 177Lu PRRT is safe and provides favourable PFS and OS in selected patients with advanced SBNEN. Liquid biopsy (NETest) has the potential to accurately delineate disease status
Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies
Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific.Results: Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly.Methods: Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples.Conclusions: We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery
Bile Microbiome Signatures Associated with Pancreatic Ductal Adenocarcinoma Compared to Benign Disease: A UK Pilot Study
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3–V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation
Bile microbiome signatures associated with pancreatic ductal adenocarcinoma compared to benign disease: a UK pilot study
Pancreatic ductal adenocarcinoma (PDAC) has a very poor survival. The intra-tumoural microbiome can influence pancreatic tumourigenesis and chemoresistance and, therefore, patient survival. The role played by bile microbiota in PDAC is unknown. We aimed to define bile microbiome signatures that can effectively distinguish malignant from benign tumours in patients presenting with obstructive jaundice caused by benign and malignant pancreaticobiliary disease. Prospective bile samples were obtained from 31 patients who underwent either Endoscopic Retrograde Cholangiopancreatography (ERCP) or Percutaneous Transhepatic Cholangiogram (PTC). Variable regions (V3-V4) of the 16S rRNA genes of microorganisms present in the samples were amplified by Polymerase Chain Reaction (PCR) and sequenced. The cohort consisted of 12 PDAC, 10 choledocholithiasis, seven gallstone pancreatitis and two primary sclerosing cholangitis patients. Using the 16S rRNA method, we identified a total of 135 genera from 29 individuals (12 PDAC and 17 benign). The bile microbial beta diversity significantly differed between patients with PDAC vs. benign disease (Permanova p = 0.0173). The separation of PDAC from benign samples is clearly seen through unsupervised clustering of Aitchison distance. We found three genera to be of significantly lower abundance among PDAC samples vs. benign, adjusting for false discovery rate (FDR). These were Escherichia (FDR = 0.002) and two unclassified genera, one from Proteobacteria (FDR = 0.002) and one from Enterobacteriaceae (FDR = 0.011). In the same samples, the genus Streptococcus (FDR = 0.033) was found to be of increased abundance in the PDAC group. We show that patients with obstructive jaundice caused by PDAC have an altered microbiome composition in the bile compared to those with benign disease. These bile-based microbes could be developed into potential diagnostic and prognostic biomarkers for PDAC and warrant further investigation
Strong coupling, discrete symmetry and flavour
We show how two principles - strong coupling and discrete symmetry - can work
together to generate the flavour structure of the Standard Model. We propose
that in the UV the full theory has a discrete flavour symmetry, typically only
associated with tribimaximal mixing in the neutrino sector. Hierarchies in the
particle masses and mixing matrices then emerge from multiple strongly coupled
sectors that break this symmetry. This allows for a realistic flavour
structure, even in models built around an underlying grand unified theory. We
use two different techniques to understand the strongly coupled physics:
confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both
approaches yield equivalent results and can be represented in a clear,
graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure
A bile-based microRNA signature for differentiating malignant from benign pancreaticobiliary disease
Differentiating between pancreatic ductal adenocarcinoma (PDAC) and cholangiocarcinoma (CCA) is crucial for the appropriate course of treatment, especially with advancements in the role of neoadjuvant chemotherapies for PDAC, compared to CCA. Furthermore, benign pancreaticobiliary diseases can mimic malignant disease, and indeterminate lesions may require repeated investigations to achieve a diagnosis. As bile flows in close proximity to these lesions, we aimed to establish a bile-based microRNA (miRNA) signature to discriminate between malignant and benign pancreaticobiliary diseases. We performed miRNA discovery by global profiling of 800 miRNAs using the NanoString nCounter platform in prospectively collected bile samples from malignant (n = 43) and benign (n = 14) pancreaticobiliary disease. Differentially expressed miRNAs were validated by RT-qPCR and further assessed in an independent validation cohort of bile from malignant (n = 37) and benign (n = 38) pancreaticobiliary disease. MiR-148a-3p was identified as a discriminatory marker that effectively distinguished malignant from benign pancreaticobiliary disease in the discovery cohort (AUC = 0.797 [95% CI 0.68–0.92]), the validation cohort (AUC = 0.772 [95% CI 0.66–0.88]), and in the combined cohorts (AUC = 0.752 [95% CI 0.67–0.84]). We also established a two-miRNA signature (miR-125b-5p and miR-194-5p) that distinguished PDAC from CCA (validation: AUC = 0.815 [95% CI 0.67–0.96]; and combined cohorts: AUC = 0.814 [95% CI 0.70–0.93]). Our research stands as the largest, multicentric, global profiling study of miRNAs in the bile from patients with pancreaticobiliary disease. We demonstrated their potential as clinically useful diagnostic tools for the detection and differentiation of malignant pancreaticobiliary disease. These bile miRNA biomarkers could be developed to complement current approaches for diagnosing pancreaticobiliary cancers. Graphical Abstract: [Figure not available: see fulltext.
MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors
BACKGROUND
MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.
METHODS
Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.
RESULTS
Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change.
CONCLUSIONS
Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
Top quark forward-backward asymmetry in R-parity violating supersymmetry
The interaction of bottom squark-mediated top quark pair production,
occurring in the R-parity violating minimal supersymmetric standard model
(MSSM), is proposed as an explanation of the anomalously large
forward-backward asymmetry (FBA) observed at the Tevatron. We find that this
model can give a good fit to top quark data, both the inclusive and invariant
mass-dependent asymmetries, while remaining consistent (at the 2-
level) with the total and differential production cross-sections. The scenario
is challenged by strong constraints from atomic parity violation (APV), but we
point out an extra diagram for the effective down quark-Z vertex, involving the
same coupling constant as required for the FBA, which tends to weaken the APV
constraint, and which can nullify it for reasonable values of the top squark
masses and mixing angle. Large contributions to flavor-changing neutral
currents can be avoided if only the third generation of sparticles is light.Comment: 24 pages, 7 figures. v3: included LHC top production cross section
data; model still consistent at 2 sigma leve
- …